Catalytic Hydrodeoxygenation of Bio-Oil Model Compounds (Ethanol, 2-Methyltetrahydrofuran) over Supported Transition Metal Phosphides
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The objective of this project is to investigate hydrodeoxygenation (HDO), a crucial step in the treatment of bio-oil, on transition metal phosphide catalysts. The study focuses on reactions of simple oxygenated compounds present in bio-oil -- ethanol and 2-methyltetrahydrofuran (2-MTHF). The findings from this project provide fundamental knowledge towards the hydrodeoxygenation of more complex bio-oil compounds. Ultimately, the knowledge contributes to the design of optimum catalysts for upgrading bio-oil.
A series of transition metal phosphides was prepared and tested; however, the focus was on Ni2P/SiO2. Characterization techniques such as X-ray diffraction (XRD), temperature-programmed reduction and desorption (TPR and TPD), X-ray photoelectron spectroscopy (XPS), and chemisorption were used. In situ Fourier transform infrared (FTIR) spectroscopy was employed to monitor the surface of Ni2P during various experiments such as: CO and pyridine adsorption and transient state of ethanol and 2-MTHF reactions. The use of these techniques allowed for a better understanding of the role of the catalyst during deoxygenation.