VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Gauged Linear Sigma Model and Mirror Symmetry

dc.contributor.authorGu, Weien
dc.contributor.committeechairSharpe, Eric R.en
dc.contributor.committeememberGray, James A.en
dc.contributor.committeememberPiilonen, Leo E.en
dc.contributor.committeememberAnderson, Lara B.en
dc.contributor.departmentPhysicsen
dc.date.accessioned2019-07-03T08:02:56Zen
dc.date.available2019-07-03T08:02:56Zen
dc.date.issued2019-07-02en
dc.description.abstractThis thesis is devoted to the study of gauged linear sigma models (GLSMs) and mirror symmetry. The first chapter of this thesis aims to introduce some basics of GLSMs and mirror symmetry. The second chapter contains the author's contributions to new exact results for GLSMs obtained by applying supersymmetric localization. The first part of that chapter concerns supermanifolds. We use supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding Atwisted GLSM correlation functions for hypersurfaces. The second part of that chapter defines associated Cartan theories for non-abelian GLSMs by studying partition functions as well as elliptic genera. The third part of that chapter focuses on N=(0,2) GLSMs. For those deformed from N=(2,2) GLSMs, we consider A/2-twisted theories and formulate the genuszero correlation functions in terms of Jeffrey-Kirwan-Grothendieck residues on Coulomb branches, which generalize the Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. We reproduce known results for abelian GLSMs, and can systematically calculate more examples with new formulas that render the quantum sheaf cohomology relations and other properties manifest. We also include unpublished results for counting deformation parameters. The third chapter is about mirror symmetry. In the first part of the third chapter, we propose an extension of the Hori-Vafa mirrror construction [25] from abelian (2,2) GLSMs they considered to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. We formally show that topological correlation functions of B-twisted mirror LGs match those of A-twisted gauge theories. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. In the last part of the third chapter, we propose an extension of the Hori-Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples which were produced by laborious guesswork. The last chapter briefly discusses some directions that the author would like to pursue in the future.en
dc.description.abstractgeneralIn this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for hypersurfaces. We also define associated Cartan theories for non-abelian GLSMs. We then consider N =(0,2) GLSMs. For those deformed from N =(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can systematically compute more examples with new formulas that render the quantum sheaf cohomology relations and other properties are manifest. We also include unpublished results for counting deformation parameters. We then turn to mirror symmetry, a duality between seemingly-different two-dimensional quantum field theories. We propose an extension of the Hori-Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with connected gauge groups, a potential solution to an old problem. In this thesis, we study two examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror correctly reproduces details ranging from the number of vacua and correlations functions to quantum cohomology relations. We then propose an extension of the HoriVafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories by special tangent bundle deformations. Our ansatz can systematically produce the (0,2) mirrors of toric varieties and the results are consistent with existing examples. We conclude with a discussion of directions that we would like to pursue in the future.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:20891en
dc.identifier.urihttp://hdl.handle.net/10919/90892en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectGLSMen
dc.subjectMirror Symmetryen
dc.subjectTQFTen
dc.titleGauged Linear Sigma Model and Mirror Symmetryen
dc.typeDissertationen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gu_W_D_2019.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format