VTechWorks staff will be away for the Independence Day holiday from July 4-7. We will respond to email inquiries on Monday, July 8. Thank you for your patience.
 

Rethinking Smart Home Design: Integrating Architectural Perspectives and Technologically-driven Design Thinking within a Framework

dc.contributor.authorDasgupta, Archien
dc.contributor.committeechairGracanin, Denisen
dc.contributor.committeememberJones, James R.en
dc.contributor.committeememberKnapp, Richard Benjaminen
dc.contributor.committeememberBowman, Douglas A.en
dc.contributor.committeememberMatkovic, Kresimiren
dc.contributor.departmentComputer Scienceen
dc.date.accessioned2021-10-26T08:00:07Zen
dc.date.available2021-10-26T08:00:07Zen
dc.date.issued2021-10-25en
dc.description.abstractSmart homes, equipped with sensing, actuation, communication, and computation capabilities, enable automation and adaptation according to the occupants' needs. These capabilities work together to build holistic spatial and living experiences for the occupants. Smart technologies significantly impact spatial experiences, making smart home design an architectural problem along with a technological problem. Nevertheless, smart home research focuses primarily on standalone technological solutions, where the spatial/architectural aspect is largely absent. We argue that addressing the technological aspects isolated from the spatial context leads to reduced experiences for the users/occupants, as this practice blocks the pathways to develop holistic and innovative smart home solutions. Hence, we focus on bridging the gap between architectural and technological components in smart home research. To this end, we studied the design of smart homes from related disciplines, i.e., architecture, human-computer interaction, human--building interaction, industrial manufacturing, and modular assembly. Our research used the triangulation technique to consult with subject matter experts (researchers, practitioners, and professors of related disciplines) to understand current design processes. We conducted ethnographic studies, focus group studies, and in-depth interviews and identified challenges and best practices for smart home design process. Our investigation recognizes a nascent research problem where the technological and architectural aspects come together in the design thinking of smart home designers. We expanded the scope of design thinking to include three primary elements of smart homes- embedded technology, architectural elements, and occupants' needs. This multidisciplinary and complex process requires a well-defined design framework to methodically address all the issues associated with it. Hence, we developed a user-centered design framework, ArTSE, through an iterative Delphi study to guide the smart home design process. ArTSE stands for "Architecture and Technology in Smart Home DEsign". This framework guides user requirements collection using HCI models, technology decision making, interaction modalities selection, the decision support system for schematic design, technology infrastructure development, and production of the necessary documentation. This framework is an evolution of the normative theory in the architectural design process that caters to the needs of smart home design. For defining implementation strategies, we applied the framework to a case study-- a smart reconfigurable space design project. Overall, we document different aspects of the smart home design process and provide a comprehensive guideline for designers, researchers, and practitioners in this area.en
dc.description.abstractgeneralSmart homes have automation systems so that occupants can monitor and control lighting, heating, electronic devices, etc. remotely using phones/computers. Smart home devices and components are equipped with sensing, actuation, communication, and computation capabilities, to enable automation and adaptation according to the occupants' needs. These capabilities work together to build holistic spatial and living experiences for the occupants. Smart technologies significantly impact spatial experiences, making smart home design an architectural problem along with a technological problem. Nevertheless, smart home research focuses primarily on standalone technological solutions, where the spatial/architectural aspect is largely absent. We argue that addressing the technological aspects isolated from the spatial context leads to reduced experiences for the occupants, as this practice blocks the pathways to develop innovative smart home solutions. Hence, we focus on bridging the gap between architectural and technological components in smart home research. To this end, we studied the design of smart homes from related disciplines, i.e., architecture, human-computer interaction, human--building interaction, industrial manufacturing, and modular construction. We consulted with subject matter experts (researchers, practitioners, and professors of related disciplines) to understand current design processes. We conducted ethnographic studies, focus group studies, and in-depth interviews and identified challenges and best practices for smart home design process. Our investigation recognizes a nascent research problem where the technological and architectural aspects come together in the design thinking of smart home designers. We expanded the scope of design thinking to include three primary elements of smart homes- embedded technology, architectural elements, and occupants' needs. This multidisciplinary and complex process requires a well-defined design framework to methodically address all the issues associated with it. Hence, we developed a user-centered design framework, ArTSE, through an iterative procedure to guide the smart home design process. ArTSE stands for "Architecture and Technology in Smart Home DEsign". This framework guides user requirements collection using HCI models, technology decision making, interaction modalities selection, the decision support system for schematic design, technology infrastructure development, and production of the necessary documentation. For defining implementation strategies, we applied the framework to a case study-- a smart reconfigurable space design project. Overall, we document different aspects of the smart home design process and provide a comprehensive guideline for designers, researchers, and practitioners in this area.en
dc.description.degreeDoctor of Philosophyen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:32415en
dc.identifier.urihttp://hdl.handle.net/10919/105654en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSmart Homeen
dc.subjectSmart Built Environmentsen
dc.subjectArchitectureen
dc.subjectDesign Processen
dc.subjectFrameworken
dc.titleRethinking Smart Home Design: Integrating Architectural Perspectives and Technologically-driven Design Thinking within a Frameworken
dc.typeDissertationen
thesis.degree.disciplineComputer Science and Applicationsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.nameDoctor of Philosophyen

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Dasgupta_A_D_2021.pdf
Size:
9.93 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Dasgupta_A_D_2021_support_3.pdf
Size:
98.18 KB
Format:
Adobe Portable Document Format
Description:
Supporting documents