Gaussian Processes for Power System Monitoring, Optimization, and Planning


TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The proliferation of renewables, electric vehicles, and power electronic devices calls for innovative approaches to learn, optimize, and plan the power system. The uncertain and volatile nature of the integrated components necessitates using swift and probabilistic solutions. Gaussian process regression is a machine learning paradigm that provides closed-form predictions with quantified uncertainties. The key property of Gaussian processes is the natural ability to integrate the sensitivity of the labels with respect to features, yielding improved accuracy. This dissertation tailors Gaussian process regression for three applications in power systems. First, a physics-informed approach is introduced to infer the grid dynamics using synchrophasor data with minimal network information. The suggested method is useful for a wide range of applications, including prediction, extrapolation, and anomaly detection. Further, the proposed framework accommodates heterogeneous noisy measurements with missing entries. Second, a learn-to-optimize scheme is presented using Gaussian process regression that predicts the optimal power flow minimizers given grid conditions. The main contribution is leveraging sensitivities to expedite learning and achieve data efficiency without compromising computational efficiency. Third, Bayesian optimization is applied to solve a bi-level minimization used for strategic investment in electricity markets. This method relies on modeling the cost of the outer problem as a Gaussian process and is applicable to non-convex and hard-to-evaluate objective functions. The designed algorithm shows significant improvement in speed while attaining a lower cost than existing methods.



Gaussian process regression, Bayesian optimization, random features