VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Gaussian Process with Input Location Error and Applications to the Composite Parts Assembly Process

dc.contributor.authorWang, Wenjiaen
dc.contributor.authorYue, Xiaoweien
dc.contributor.authorHaaland, Benjaminen
dc.contributor.authorWu, C. F. Jeffen
dc.date.accessioned2023-02-07T17:27:35Zen
dc.date.available2023-02-07T17:27:35Zen
dc.date.issued2022-06en
dc.date.updated2023-02-05T18:06:10Zen
dc.description.abstractThis paper investigates Gaussian process modeling with input location error, where the inputs are corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according to whether there is noise at the target location or not. We show that the mean squared prediction error converges to a nonzero constant if there is noise at the target location, and we provide an upper bound of the mean squared prediction error if there is no noise at the target location. We investigate the use of stochastic Kriging in the prediction of Gaussian processes with input location error and show that stochastic Kriging is a good approximation when the sample size is large. Several numerical examples are given to illustrate the results, and a case study on the assembly of composite parts is presented. Technical proofs are provided in the appendices.en
dc.description.versionAccepted versionen
dc.format.extent32 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1137/20M1312447en
dc.identifier.issue2en
dc.identifier.orcidYue, Xiaowei [0000-0001-6019-0940]en
dc.identifier.urihttp://hdl.handle.net/10919/113699en
dc.identifier.volume10en
dc.language.isoenen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleGaussian Process with Input Location Error and Applications to the Composite Parts Assembly Processen
dc.title.serialSIAM/ASA Journal on Uncertainty Quantificationen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Industrial and Systems Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GPwithlocationEjuq__3rd_Revision_.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
Description:
Accepted version