Consistency and Uniform Bounds for Heteroscedastic Simulation Metamodeling and Their Applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Heteroscedastic metamodeling has gained popularity as an effective tool for analyzing and optimizing complex stochastic systems. A heteroscedastic metamodel provides an accurate approximation of the input-output relationship implied by a stochastic simulation experiment whose output is subject to input-dependent noise variance. Several challenges remain unsolved in this field. First, in-depth investigations into the consistency of heteroscedastic metamodeling techniques, particularly from the sequential prediction perspective, are lacking. Second, sequential heteroscedastic metamodel-based level-set estimation (LSE) methods are scarce. Third, the increasingly high computational cost required by heteroscedastic Gaussian process-based LSE methods in the sequential sampling setting is a concern. Additionally, when constructing a valid uniform bound for a heteroscedastic metamodel, the impact of noise variance estimation is not adequately addressed. This dissertation aims to tackle these challenges and provide promising solutions. First, we investigate the information consistency of a widely used heteroscedastic metamodeling technique, stochastic kriging (SK). Second, we propose SK-based LSE methods leveraging novel uniform bounds for input-point classification. Moreover, we incorporate the Nystrom approximation and a principled budget allocation scheme to improve the computational efficiency of SK-based LSE methods. Lastly, we investigate empirical uniform bounds that take into account the impact of noise variance estimation, ensuring an adequate coverage capability.