Disentangling the influence of dispersal on community assembly and stability

TR Number

Date

2023-01-31

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With the introduction of metacommunity theory, the field of community ecology expanded its scope to include patterns and processes beyond the scale of local communities. Dispersal, or the movement of organisms between sites, can play an influential role in generating patterns of community assembly and stability. However, little is known about the role of dispersal in structuring and stabilizing freshwater communities. For my dissertation, I conducted a literature review of dispersal in stream metapopulations and metacommunities. Our current knowledge of the movement of freshwater taxa is limited due to difficulties in accurately monitoring dispersal. We have inferred the role of dispersal based primarily on organismal-based and graph-based proxies, although the body of work in modeling and experimental research is growing. Future research should incorporate innovative methods to directly monitor dispersal at finer spatial and temporal scales. To address this knowledge gap, we experimentally manipulated dispersal mode (aerial and drift) alongside the magnitude of dispersal (network location as a proxy) to investigate the role of these components of dispersal in community assembly and multiple metrics of stability. The results of my experiment suggest both factors may play a role in community assembly and stability patterns in stream metacommunities. Lastly, I conducted a mesocosm experiment with zooplankton mesocosms to investigate if biodiversity can generate asynchronous patterns of community dynamics that contribute to stability. There was a positive biodiversity-asynchrony relationship that, in turn, generated higher levels of stability. This effect was strongest in communities connected via dispersal. Overall, my dissertation demonstrates that dispersal plays a role in the assembly and stability of freshwater communities.

Description

Keywords

Biodiversity, community assembly, stability, global change

Citation