Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations
dc.contributor.author | Li, Jian | en |
dc.contributor.author | He, Zhen | en |
dc.contributor.department | Civil and Environmental Engineering | en |
dc.date.accessioned | 2016-11-29T16:15:42Z | en |
dc.date.available | 2016-11-29T16:15:42Z | en |
dc.date.issued | 2016-01-01 | en |
dc.description.abstract | Membrane bioelectrochemical reactors (MBERs) integrate membrane filtration into bioelectrochemical systems for sustainable wastewater treatment and recovery of bioenergy and other resource. Mathematical models for MBERs will advance the understanding of this technology towards further development. In the present study, a mathematical model was implemented for predicting current generation, membrane fouling, and organic removal within MBERs. The relative root-mean-square error was used to examine the model fit to the experimental data. It was found that a constant to determine how fast the internal resistance responds to the change of the anodophillic microorganism concentration could have a dominant impact on current generation. Hydraulic cross-flow exhibited a minor effect on membrane fouling unless it was reduced below 0.5 m s−1. This MBER model encourages further optimization and eventually can be used to guide MBER development. | en |
dc.description.version | Published version | en |
dc.format.extent | 3897 - 3906 (10) page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/s11356-015-5611-3 | en |
dc.identifier.issn | 0944-1344 | en |
dc.identifier.issue | 4 | en |
dc.identifier.uri | http://hdl.handle.net/10919/73531 | en |
dc.identifier.volume | 23 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000369342400086&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Environmental Sciences | en |
dc.subject | Environmental Sciences & Ecology | en |
dc.subject | Bioelectrochemical system | en |
dc.subject | Microbial fuel cell | en |
dc.subject | Membrane separation | en |
dc.subject | Mathematical modeling | en |
dc.subject | Wastewater treatment | en |
dc.subject | WASTE-WATER TREATMENT | en |
dc.subject | MICROBIAL FUEL-CELLS | en |
dc.subject | BIOREACTOR | en |
dc.subject | PERFORMANCE | en |
dc.subject | TECHNOLOGY | en |
dc.subject | SYSTEM | en |
dc.title | Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations | en |
dc.title.serial | Environmental Science and Pollution Research | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Civil & Environmental Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |