Smiley guests post long reviews!
dc.contributor.author | Li, Chunhong | en |
dc.contributor.author | Ye, Qiang | en |
dc.contributor.author | Nicolau, Juan Luis | en |
dc.contributor.author | Liu, Xianwei | en |
dc.date.accessioned | 2022-01-13T14:31:58Z | en |
dc.date.available | 2022-01-13T14:31:58Z | en |
dc.date.issued | 2021-07-01 | en |
dc.date.updated | 2022-01-13T14:31:53Z | en |
dc.description.abstract | The inclusion of a photo in users’ profile provides information about them and shows a higher sense of self-expression and potential engagement. On peer-to-peer rental platforms, profile images may be useful for hosts and guests to infer individual characteristics and expectations. We try to fill a gap in the literature by inferring guests’ posting behavior through their profile image. Using Airbnb data and deep learning techniques, our empirical analysis reveals that guests who upload profile images—especially profile images displaying happy emotions—are more involved in posting long reviews. As theoretical implications, these results add knowledge to the application of the Five Factor Model of Personality, deep learning, image recognition, and emotion recognition in hospitality. As managerial implications, the prediction of posting behavior through the mining of visual information can be a relevant tool in the age of big data. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 5 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier | ARTN 102963 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1016/j.ijhm.2021.102963 | en |
dc.identifier.eissn | 1873-4693 | en |
dc.identifier.issn | 0278-4319 | en |
dc.identifier.orcid | Nicolau Gonzalbez, Juan [0000-0003-0048-2823] | en |
dc.identifier.uri | http://hdl.handle.net/10919/107596 | en |
dc.identifier.volume | 96 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000659531400012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Social Sciences | en |
dc.subject | Hospitality, Leisure, Sport & Tourism | en |
dc.subject | Social Sciences - Other Topics | en |
dc.subject | Airbnb | en |
dc.subject | Reviews | en |
dc.subject | Profile image | en |
dc.subject | Deep learning | en |
dc.subject | Personality | en |
dc.subject | PHOTOS | en |
dc.subject | PERSONALITY | en |
dc.subject | TRUST | en |
dc.subject | 1504 Commercial Services | en |
dc.subject | 1505 Marketing | en |
dc.subject | 1506 Tourism | en |
dc.subject | Sport, Leisure & Tourism | en |
dc.title | Smiley guests post long reviews! | en |
dc.title.serial | International Journal of Hospitality Management | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business/Hospitality and Tourism Management | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Pamplin College of Business/PCOB T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Li, Ye, Nicolau and Liu (2021) postprint.pdf
- Size:
- 666.04 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version