On Grouped Observation Level Interaction and a Big Data Monte Carlo Sampling Algorithm
dc.contributor.author | Hu, Xinran | en |
dc.contributor.committeechair | Leman, Scotland C. | en |
dc.contributor.committeemember | North, Christopher L. | en |
dc.contributor.committeemember | Smith, Eric P. | en |
dc.contributor.committeemember | House, Leanna L. | en |
dc.contributor.department | Statistics | en |
dc.date.accessioned | 2015-01-27T09:00:24Z | en |
dc.date.available | 2015-01-27T09:00:24Z | en |
dc.date.issued | 2015-01-26 | en |
dc.description.abstract | Big Data is transforming the way we live. From medical care to social networks, data is playing a central role in various applications. As the volume and dimensionality of datasets keeps growing, designing effective data analytics algorithms emerges as an important research topic in statistics. In this dissertation, I will summarize our research on two data analytics algorithms: a visual analytics algorithm named Grouped Observation Level Interaction with Multidimensional Scaling and a big data Monte Carlo sampling algorithm named Batched Permutation Sampler. These two algorithms are designed to enhance the capability of generating meaningful insights and utilizing massive datasets, respectively. | en |
dc.description.degree | Ph. D. | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:4290 | en |
dc.identifier.uri | http://hdl.handle.net/10919/51224 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Visual Analytics | en |
dc.subject | Big Data Monte Carlo Sampling | en |
dc.title | On Grouped Observation Level Interaction and a Big Data Monte Carlo Sampling Algorithm | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Statistics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1