Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor
dc.contributor.author | Sun, Bo | en |
dc.contributor.author | Xu, Yijun | en |
dc.contributor.author | Wang, Qinling | en |
dc.contributor.author | Lu, Shuai | en |
dc.contributor.author | Yu, Ruizhi | en |
dc.contributor.author | Gu, Wei | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.date.accessioned | 2024-01-22T14:16:39Z | en |
dc.date.available | 2024-01-22T14:16:39Z | en |
dc.date.issued | 2023-12-04 | en |
dc.description.abstract | As a model reduction tool, coherency identification has been extensively investigated by power researchers using various model-driven and data-driven approaches. Model-driven approaches typically lose their accuracy due to linear assumptions and parameter uncertainties, while data-driven approaches inevitably suffer from bad data issues. To overcome these weaknesses, we propose a data-driven cumulant tensor-based approach that can identify coherent generators and detect anomalies simultaneously. More specifically, it converts the angular velocities of generators into a fourth-order cumulant tensor that can be decomposed to reflect the coherent generators. Also, using co-kurtosis in the cumulant tensor, anomalies can be detected as well. The simulations reveal its excellent performance. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 1-4 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TPWRS.2023.3338958 | en |
dc.identifier.eissn | 1558-0679 | en |
dc.identifier.issn | 0885-8950 | en |
dc.identifier.issue | 99 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117506 | en |
dc.identifier.volume | PP | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor | en |
dc.title.serial | IEEE Transactions on Power Systems | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Yijun-Mili_Anomaly_Detection_in_Data-Driven_Coherency_Identification_Using_Cumulant_Tensor.pdf
- Size:
- 476.07 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1