Transcendence degree in power series rings
dc.contributor.author | Boyd, David Watts | en |
dc.contributor.committeechair | Arnold, Jimmy T. | en |
dc.contributor.committeemember | Crofts, G. W. | en |
dc.contributor.committeemember | Feustel, C. D. | en |
dc.contributor.committeemember | McCoy, Robert A. | en |
dc.contributor.committeemember | Sheldon, P. B. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:11:03Z | en |
dc.date.adate | 2010-05-13 | en |
dc.date.available | 2014-03-14T21:11:03Z | en |
dc.date.issued | 1975-05-09 | en |
dc.date.rdate | 2010-05-13 | en |
dc.date.sdate | 2010-05-13 | en |
dc.description.abstract | Let D[[X]] be the ring of formal power series over the commutative integral domain D. Gilmer has shown that if K is the quotient field of D, then D[[X]] and K[[X]] have the same quotient field if and only if K[[X]] ~ D[[X]]D_(O). Further, if a is any nonzero element of D, Sheldon has shown that either D[l/a][[X]] and D[[X]] have the same quotient field, or the quotient field of D[l/a][[X]] has infinite transcendence degree over the quotient field of D[[X]]. In this paper, the relationship between D[[X]] and J[[X]] is investigated for an arbitrary overring J of D. If D is integrally closed, it is shown that either J[[X]] and D[[X]] have the same quotient field, or the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]]. It is shown further, that D is completely integrally closed if and only if the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]] for each proper overring J of D. Several related results are given; for example, if D is Noetherian, and if J is a finite ring extension of D, then either J[[X]] and D[[X]] have the same quotient field or the quotient field of J[[X]] has infinite transcendence degree over the quotient field of D[[X]]. An example is given to show that if D is not integrally closed, J[[X]] may be algebraic over D[[X]] while J[[X]] and ~[[X]] have dif~erent quotient fields. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | 25 leave | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-05132010-132826 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-05132010-132826/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/37802 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1975.B695.pdf | en |
dc.relation.isformatof | OCLC# 22121505 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1975.B695 | en |
dc.subject.lcsh | Power series rings | en |
dc.title | Transcendence degree in power series rings | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1975.B695.pdf
- Size:
- 780.54 KB
- Format:
- Adobe Portable Document Format