Gauss-type formulas for linear functionals
dc.contributor.author | Chen, Jih-Hsiang | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2017-01-30T21:25:15Z | en |
dc.date.available | 2017-01-30T21:25:15Z | en |
dc.date.issued | 1982 | en |
dc.description.abstract | We give a method, by solving a nonlinear system of equations, for Gauss harmonic interpolation formulas which are useful for approximating, the solution of the Dirichlet problem. We also discuss approximations for integrals of the form I(f) = (1/2πi) ∫<sub>L</sub> (f(z)/(z-α)) dz. Our approximations shall be of the form Q(f) = Σ<sub>k=1</sub><sup>n</sup> A<sub>k</sub>f(τ<sub>k</sub>). We characterize the nodes τ₁, τ₂, …, τ<sub>n</sub>, to get the maximum precision for our formulas. Finally, we propose a general problem of approximating for linear functionals; our results need further development. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iv, 61, [1] leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/74845 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 9185708 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1982.C546 | en |
dc.subject.lcsh | Harmonic functions | en |
dc.subject.lcsh | Approximation theory | en |
dc.title | Gauss-type formulas for linear functionals | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1