VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Gauss-type formulas for linear functionals

dc.contributor.authorChen, Jih-Hsiangen
dc.contributor.departmentMathematicsen
dc.date.accessioned2017-01-30T21:25:15Zen
dc.date.available2017-01-30T21:25:15Zen
dc.date.issued1982en
dc.description.abstractWe give a method, by solving a nonlinear system of equations, for Gauss harmonic interpolation formulas which are useful for approximating, the solution of the Dirichlet problem. We also discuss approximations for integrals of the form I(f) = (1/2πi) ∫<sub>L</sub> (f(z)/(z-α)) dz. Our approximations shall be of the form Q(f) = Σ<sub>k=1</sub><sup>n</sup> A<sub>k</sub>f(τ<sub>k</sub>). We characterize the nodes τ₁, τ₂, …, τ<sub>n</sub>, to get the maximum precision for our formulas. Finally, we propose a general problem of approximating for linear functionals; our results need further development.en
dc.description.degreePh. D.en
dc.format.extentiv, 61, [1] leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/74845en
dc.language.isoen_USen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 9185708en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1982.C546en
dc.subject.lcshHarmonic functionsen
dc.subject.lcshApproximation theoryen
dc.titleGauss-type formulas for linear functionalsen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMathematicsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1982.C546.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format