Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction
dc.contributor.author | Lu, Chang | en |
dc.contributor.author | Reddy, Chandan K. | en |
dc.contributor.author | Ning, Yue | en |
dc.date.accessioned | 2022-01-19T22:07:55Z | en |
dc.date.available | 2022-01-19T22:07:55Z | en |
dc.date.issued | 2021-09-20 | en |
dc.date.updated | 2022-01-19T22:07:53Z | en |
dc.description.abstract | Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 13 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/TCYB.2021.3109881 | en |
dc.identifier.eissn | 2168-2275 | en |
dc.identifier.issn | 2168-2267 | en |
dc.identifier.issue | 99 | en |
dc.identifier.orcid | Reddy, Chandan [0000-0003-2839-3662] | en |
dc.identifier.pmid | 34546938 | en |
dc.identifier.uri | http://hdl.handle.net/10919/107797 | en |
dc.identifier.volume | PP | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000733513800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Technology | en |
dc.subject | Automation & Control Systems | en |
dc.subject | Computer Science, Artificial Intelligence | en |
dc.subject | Computer Science, Cybernetics | en |
dc.subject | Computer Science | en |
dc.subject | Diseases | en |
dc.subject | Medical diagnostic imaging | en |
dc.subject | Task analysis | en |
dc.subject | Codes | en |
dc.subject | Predictive models | en |
dc.subject | Training | en |
dc.subject | Medical services | en |
dc.subject | Electronic health records (EHRs) | en |
dc.subject | event prediction | en |
dc.subject | graph learning | en |
dc.subject | hyperbolic embeddings | en |
dc.subject | model interpretability | en |
dc.subject | 0102 Applied Mathematics | en |
dc.subject | 0801 Artificial Intelligence and Image Processing | en |
dc.subject | 0906 Electrical and Electronic Engineering | en |
dc.subject | Artificial Intelligence & Image Processing | en |
dc.title | Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction | en |
dc.title.serial | IEEE Transactions on Cybernetics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Early Access | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TC21[1].pdf
- Size:
- 1.69 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version