Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopic/computational analysis
dc.contributor.author | Robertson, John L. | en |
dc.contributor.author | Senger, Ryan S. | en |
dc.contributor.author | Talty, Janine | en |
dc.contributor.author | Du, Pang | en |
dc.contributor.author | Sayed-Issa, Amr | en |
dc.contributor.author | Avellar, Maggie L. | en |
dc.contributor.author | Ngo, Lacy T. | en |
dc.contributor.author | Gomez de la Espriella, Mariana | en |
dc.contributor.author | Fazili, Tasaduq N. | en |
dc.contributor.author | Jackson-Akers, Jasmine Y. | en |
dc.contributor.author | Guruli, Georgi | en |
dc.contributor.author | Orlando, Giuseppe | en |
dc.contributor.editor | Bussolati, Benedetta | en |
dc.date.accessioned | 2022-08-09T20:32:46Z | en |
dc.date.available | 2022-08-09T20:32:46Z | en |
dc.date.issued | 2022-07-01 | en |
dc.date.updated | 2022-08-08T21:25:01Z | en |
dc.description.abstract | We developed and tested a method to detect COVID-19 disease, using urine specimens. The technology is based on Raman spectroscopy and computational analysis. It does not detect SARS-CoV-2 virus or viral components, but rather a urine ‘molecular fingerprint’, representing systemic metabolic, inflammatory, and immunologic reactions to infection. We analyzed voided urine specimens from 46 symptomatic COVID-19 patients with positive real time-polymerase chain reaction (RT-PCR) tests for infection or household contact with test-positive patients. We compared their urine Raman spectra with urine Raman spectra from healthy individuals (n = 185), peritoneal dialysis patients (n = 20), and patients with active bladder cancer (n = 17), collected between 2016–2018 (i.e., pre-COVID-19). We also compared all urine Raman spectra with urine specimens collected from healthy, fully vaccinated volunteers (n = 19) from July to September 2021. Disease severity (primarily respiratory) ranged among mild (n = 25), moderate (n = 14), and severe (n = 7). Seventy percent of patients sought evaluation within 14 days of onset. One severely affected patient was hospitalized, the remainder being managed with home/ambulatory care. Twenty patients had clinical pathology profiling. Seven of 20 patients had mildly elevated serum creatinine values (>0.9 mg/dl; range 0.9–1.34 mg/dl) and 6/7 of these patients also had estimated glomerular filtration rates (eGFR) <90 mL/min/1.73m2 (range 59–84 mL/min/1.73m2). We could not determine if any of these patients had antecedent clinical pathology abnormalities. Our technology (Raman Chemometric Urinalysis—Rametrix®) had an overall prediction accuracy of 97.6% for detecting complex, multimolecular fingerprints in urine associated with COVID-19 disease. The sensitivity of this model for detecting COVID-19 was 90.9%. The specificity was 98.8%, the positive predictive value was 93.0%, and the negative predictive value was 98.4%. In assessing severity, the method showed to be accurate in identifying symptoms as mild, moderate, or severe (random chance = 33%) based on the urine multimolecular fingerprint. Finally, a fingerprint of ‘Long COVID-19’ symptoms (defined as lasting longer than 30 days) was located in urine. Our methods were able to locate the presence of this fingerprint with 70.0% sensitivity and 98.7% specificity in leave-one-out cross-validation analysis. Further validation testing will include sampling more patients, examining correlations of disease severity and/or duration, and employing metabolomic analysis (Gas Chromatography–Mass Spectrometry [GC-MS], High Performance Liquid Chromatography [HPLC]) to identify individual components contributing to COVID-19 molecular fingerprints. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1371/journal.pone.0270914 | en |
dc.identifier.eissn | 1932-6203 | en |
dc.identifier.issn | 1932-6203 | en |
dc.identifier.orcid | Senger, Ryan [0000-0002-2450-6693] | en |
dc.identifier.orcid | Robertson, John [0000-0002-5499-9943] | en |
dc.identifier.orcid | Du, Pang [0000-0003-1365-4831] | en |
dc.identifier.orcid | Gomez, Mariana [0000-0001-8963-9959] | en |
dc.identifier.other | PONE-D-21-38432 (PII) | en |
dc.identifier.pmid | 35849572 | en |
dc.identifier.uri | http://hdl.handle.net/10919/111492 | en |
dc.identifier.volume | 17 | en |
dc.language.iso | en | en |
dc.publisher | PLOS | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/35849572 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Clinical Research | en |
dc.subject | 4.2 Evaluation of markers and technologies | en |
dc.subject | 4.1 Discovery and preclinical testing of markers and technologies | en |
dc.subject | 4 Detection, screening and diagnosis | en |
dc.subject.mesh | Humans | en |
dc.subject.mesh | Urinalysis | en |
dc.subject.mesh | Spectrum Analysis, Raman | en |
dc.subject.mesh | COVID-19 | en |
dc.subject.mesh | SARS-CoV-2 | en |
dc.title | Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopic/computational analysis | en |
dc.title.serial | PLOS One | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dcterms.dateAccepted | 2022-06-17 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/Biological Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Statistics | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Engineering/Biomedical Engineering and Mechanics | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/CALS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Durelle Scott | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine/Internal Medicine | en |
pubs.organisational-group | /Virginia Tech/VT Carilion School of Medicine/Internal Medicine/Infectious Disease | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Alterations in the molecular composition of COVID-19 patient urine, detected using Raman spectroscopiccomputational analysis.pdf
- Size:
- 1.58 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version