Resolutions mod I, Golod pairs
dc.contributor.author | Gokhale, Dhananjay R. | en |
dc.contributor.committeechair | Green, Edward L. | en |
dc.contributor.committeemember | Farkas, Daniel R. | en |
dc.contributor.committeemember | Thomson, James E. | en |
dc.contributor.committeemember | McCoy, Robert A. | en |
dc.contributor.committeemember | Arnold, Jimmy T. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2014-03-14T21:19:09Z | en |
dc.date.adate | 2005-09-20 | en |
dc.date.available | 2014-03-14T21:19:09Z | en |
dc.date.issued | 1992-04-05 | en |
dc.date.rdate | 2005-09-20 | en |
dc.date.sdate | 2005-09-20 | en |
dc.description.abstract | Let <i>R</i> be a commutative ring, <i>I</i> be an ideal in <i>R</i> and let <i>M</i> be a <i>R/ I</i> -module. In this thesis we construct a <i>R/ I</i> -projective resolution of <i>M</i> using given <i>R</i>-projective resolutions of <i>M</i> and <i>I</i>. As immediate consequences of our construction we give descriptions of the canonical maps Ext<sub>R/I</sub><i>(M,N)</i> -> Ext<sub>R</sub><i>(M,N)</i> and Tor<sup>R</sup><sub>N</sub><i>(M, N)</i> -> Tor<sup>R/I</sup><sub>n</sub><i>(M, N)</i> for a <i>R/I</i> module <i>N</i> and we give a new proof of a theorem of Gulliksen [6] which states that if <i>I</i> is generated by a regular sequence of length r then ∐∞<sub>n=o</sub> Tor<sup>R/I</sup><sub>n</sub> <i>(M, N)</i> is a graded module over the polynomial ring </i>R/ I</i> [X₁. .. X<sub>r</sub>] with deg X<sub>i</sub> = -2, 1 ≤ i ≤ r. If <i>I</i> is generated by a regular element and if the <i>R</i>-projective dimension of <i>M</i> is finite, we show that <i>M</i> has a <i>R/ I</i>-projective resolution which is eventually periodic of period two. This generalizes a result of Eisenbud [3]. In the case when <i>R</i> = (<i>R</i>, m) is a Noetherian local ring and <i>M</i> is a finitely generated <i>R/ I</i> -module, we discuss the minimality of the constructed resolution. If it is minimal we call (<i>M, I</i>) a Golod pair over <i>R</i>. We give a direct proof of a theorem of Levin [10] which states thdt if (<i>M,I</i>) is a Golod pair over <i>R</i> then (Ω<sup>n</sup><sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> where Ω<sup>n</sup><sub>R/I</sub>R/I(M) is the nth syzygy of the constructed <i>R/ I</i> -projective resolution of <i>M</i>. We show that the converse of the last theorem is not true and if (Ω¹<sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> then we give a necessary and sufficient condition for (<i>M, I</i>) to be a Golod pair over <i>R</i>. Finally we prove that if (<i>M, I</i>) is a Golod pair over <i>R</i> and if a ∈ <i>I</i> - m<i>I</i> is a regular element in </i>R</i> then (<i>M</i>, (a)) and (1/(a), (a)) are Golod pairs over <i>R</i> and (<i>M,I</i>/(a)) is a Golod pair over <i>R</i>/(a). As a corrolary of this result we show that if the natural map π : <i>R</i> → <i>R/1</i> is a Golod homomorphism ( this means (<i>R</i>/m, <i>I</i>) is a Golod pair over <i>R</i> ,Levin [8]), then the natural maps π₁ : <i>R</i> → <i>R</i>/(a) and π₂ : <i>R</i>/(a) → <i>R/1</i> are Golod homomorphisms. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 47 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-09202005-091014 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-09202005-091014/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/39431 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1992.G643.pdf | en |
dc.relation.isformatof | OCLC# 26121360 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1992.G643 | en |
dc.subject.lcsh | Commutative rings | en |
dc.subject.lcsh | Homomorphisms (Mathematics) | en |
dc.subject.lcsh | Projective modules (Algebra) | en |
dc.title | Resolutions mod I, Golod pairs | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1