Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice

dc.contributorVirginia Techen
dc.contributor.authorJordens, R.en
dc.contributor.authorTarruell, L.en
dc.contributor.authorGreif, D.en
dc.contributor.authorUehlinger, T.en
dc.contributor.authorStrohmaier, N.en
dc.contributor.authorMoritz, H.en
dc.contributor.authorEsslinger, T.en
dc.contributor.authorDe Leo, L.en
dc.contributor.authorKollath, C.en
dc.contributor.authorGeorges, A.en
dc.contributor.authorScarola, Vito W.en
dc.contributor.authorPollet, L.en
dc.contributor.authorBurovski, E.en
dc.contributor.authorKozik, E.en
dc.contributor.authorTroyer, M.en
dc.contributor.departmentPhysicsen
dc.date.accessed2013-12-10en
dc.date.accessioned2013-12-10T17:31:18Zen
dc.date.available2013-12-10T17:31:18Zen
dc.date.issued2010-05-07en
dc.description.abstractWe perform a quantitative simulation of the repulsive Fermi-Hubbard model using an ultracold gas trapped in an optical lattice. The entropy of the system is determined by comparing accurate measurements of the equilibrium double occupancy with theoretical calculations over a wide range of parameters. We demonstrate the applicability of both high-temperature series and dynamical mean-field theory to obtain quantitative agreement with the experimental data. The reliability of the entropy determination is confirmed by a comprehensive analysis of all systematic errors. In the center of the Mott insulating cloud we obtain an entropy per atom as low as 0.77k(B) which is about twice as large as the entropy at the Neel transition. The corresponding temperature depends on the atom number and for small fillings reaches values on the order of the tunneling energy.en
dc.description.sponsorshipSNFen
dc.description.sponsorshipNCCR MaNEPen
dc.description.sponsorshipNAME-QUAM (EU, FET-Open)en
dc.description.sponsorshipSCALA (EU)en
dc.description.sponsorshipANR (FABIOLA and FAMOUS)en
dc.description.sponsorshipDARPA-OLEen
dc.description.sponsorship"Triangle de la Physique."en
dc.identifier.citationJoerdens, R. ; Tarruell, L. ; Greif, D. ; et al., May 7, 2010. “Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Lattice,” PHYSICAL REVIEW LETTERS 104(18): 180401. DOI: 10.1103/PhysRevLett.104.180401en
dc.identifier.doihttps://doi.org/10.1103/PhysRevLett.104.180401en
dc.identifier.issn0031-9007en
dc.identifier.urihttp://hdl.handle.net/10919/24497en
dc.identifier.urlhttp://link.aps.org/doi/10.1103/PhysRevLett.104.180401en
dc.language.isoen_USen
dc.publisherAmerican Physical Societyen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectmott insulatoren
dc.subjectatomsen
dc.subjecttransitionen
dc.subjectquantumen
dc.subjectgasen
dc.subjectPhysicsen
dc.titleQuantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold Fermions in an Optical Latticeen
dc.title.serialPhysical Review Lettersen
dc.typeArticle - Refereeden

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevLett.104.180401.pdf
Size:
360.83 KB
Format:
Adobe Portable Document Format
Description:
Main article