Partitioned Active Learning for Heterogeneous Systems
dc.contributor.author | Lee, Cheolhei | en |
dc.contributor.author | Wang, Kaiwen | en |
dc.contributor.author | Wu, Jianguo | en |
dc.contributor.author | Cai, Wenjun | en |
dc.contributor.author | Yue, Xiaowei | en |
dc.date.accessioned | 2023-02-07T17:16:39Z | en |
dc.date.available | 2023-02-07T17:16:39Z | en |
dc.date.issued | 2023-08 | en |
dc.date.updated | 2023-02-05T04:01:23Z | en |
dc.description.abstract | Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time. | en |
dc.description.version | Accepted version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.orcid | Yue, Xiaowei [0000-0001-6019-0940] | en |
dc.identifier.uri | http://hdl.handle.net/10919/113698 | en |
dc.language.iso | en | en |
dc.publisher | ASME | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.title | Partitioned Active Learning for Heterogeneous Systems | en |
dc.title.serial | Journal of Computing and Information Science in Engineering | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- pal_asme (2).pdf
- Size:
- 2.31 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version