VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Bernoulli Regression Models: Revisiting the Specification of Statistical Models with Binary Dependent Variables

dc.contributor.authorBergtold, Jason S.en
dc.contributor.authorSpanos, Arisen
dc.contributor.authorOnukwugha, Eberechukwuen
dc.date.accessioned2024-02-20T20:25:24Zen
dc.date.available2024-02-20T20:25:24Zen
dc.date.issued2010en
dc.description.abstractThe latent variable and generalized linear modelling approaches do not provide a systematic approach for modelling discrete choice observational data. Another alternative, the probabilistic reduction (PR) approach, provides a systematic way to specify such models that can yield reliable statistical and substantive inferences. The purpose of this paper is to re-examine the underlying probabilistic foundations of conditional statistical models with binary dependent variables using the PR approach. This leads to the development of the Bernoulli Regression Model, a family of statistical models, which includes the binary logistic regression model. The paper provides an explicit presentation of probabilistic model assumptions, guidance on model specification and estimation, and empirical application.en
dc.description.versionPublished versionen
dc.format.extentPages 1-28en
dc.format.extent28 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1016/S1755-5345(13)70033-2en
dc.identifier.issn1755-5345en
dc.identifier.issue2en
dc.identifier.urihttps://hdl.handle.net/10919/118069en
dc.identifier.volume3en
dc.language.isoenen
dc.publisherElsevieren
dc.rightsCreative Commons Attribution-NonCommercial 2.0 UKen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.0/uk/en
dc.subjectBernoulli Regression Modelen
dc.subjectGeneralized Linear Modelsen
dc.subjectLatent Variable Modelsen
dc.subjectLogistic Regressionen
dc.subjectModel Specificationen
dc.subjectProbabilistic Reduction Approachen
dc.titleBernoulli Regression Models: Revisiting the Specification of Statistical Models with Binary Dependent Variablesen
dc.title.serialJournal of Choice Modellingen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Economicsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spanos-2010-Logit-Probit.pdf
Size:
321.12 KB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: