High-Efficiency Skutterudite Modules at a Low Temperature Gradient
dc.contributor.author | Li, Wenjie | en |
dc.contributor.author | Stokes, David | en |
dc.contributor.author | Poudel, Bed | en |
dc.contributor.author | Saparamadu, Udara | en |
dc.contributor.author | Nozariasbmarz, Amin | en |
dc.contributor.author | Kang, Han Byul | en |
dc.contributor.author | Priya, Shashank | en |
dc.date.accessioned | 2019-11-12T13:34:54Z | en |
dc.date.available | 2019-11-12T13:34:54Z | en |
dc.date.issued | 2019-11-11 | en |
dc.date.updated | 2019-11-12T08:30:03Z | en |
dc.description.abstract | Thermoelectric skutterudite materials have been widely investigated for their potential application in mid-temperature waste heat recovery that has not been efficiently utilized A large amount of research has focused on developing materials with a high thermoelectric figure of merit (<i>zT</i>). However, the translation of material properties to device performance has limited success. Here, we demonstrate single-filling n-type Yb<sub>0.25</sub>Fe<sub>0.25</sub>Co<sub>3.75</sub>Sb<sub>12</sub> and multi-filling La<sub>0.7</sub>Ti<sub>0.1</sub>Ga<sub>0.1</sub>Fe<sub>2.7</sub>Co<sub>1.3</sub>Sb<sub>12</sub> skutterudites with a maximum <i>zT</i> of ~1.3 at 740 K and ~0.97 at 760 K. The peak <i>zT</i> of skutterudites usually occurs above 800 K, but, as shown here, the shift in peak <i>zT</i> to lower temperatures is beneficial for enhancing conversion efficiency at a lower hot-side temperature. In this work, we have demonstrated that the Fe-substitution significantly reduces the thermal conductivity of n-type skutterudite, closer to p-type skutterudite thermal conductivity, resulting in a module that is more compatible to operate at elevated temperatures. A uni-couple skutterudite module was fabricated using a molybdenum electrode and Ga–Sn liquid metal as the thermal interface material. A conversion efficiency of 7.27% at a low temperature gradient of 366 K was achieved, which is among the highest efficiencies reported in the literature at this temperature gradient. These results highlight that peak <i>zT</i> shift and optimized module design can improve conversion efficiency of thermoelectric modules at a low temperature gradient. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Li, W.; Stokes, D.; Poudel, B.; Saparamadu, U.; Nozariasbmarz, A.; Kang, H.B.; Priya, S. High-Efficiency Skutterudite Modules at a Low Temperature Gradient. Energies 2019, 12, 4292. | en |
dc.identifier.doi | https://doi.org/10.3390/en12224292 | en |
dc.identifier.uri | http://hdl.handle.net/10919/95505 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | thermoelectric | en |
dc.subject | skutterudite | en |
dc.subject | conversion efficiency | en |
dc.subject | temperature gradient | en |
dc.title | High-Efficiency Skutterudite Modules at a Low Temperature Gradient | en |
dc.title.serial | Energies | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |