A Machine Learning Approach to Flood Depth and Extent Detection Using Sentinel 1A/B Synthetic Aperture Radar
dc.contributor.author | Tiampo, K. | en |
dc.contributor.author | Woods, C. | en |
dc.contributor.author | Huang, L. | en |
dc.contributor.author | Sharma, P. | en |
dc.contributor.author | Chen, Z. | en |
dc.contributor.author | Kar, B. | en |
dc.contributor.author | Bausch, D. | en |
dc.contributor.author | Simmons, C. | en |
dc.contributor.author | Estrada, R. | en |
dc.contributor.author | Willis, Michael J. | en |
dc.contributor.author | Glasscoe, M. | en |
dc.date.accessioned | 2024-02-21T19:42:54Z | en |
dc.date.available | 2024-02-21T19:42:54Z | en |
dc.date.issued | 2021-01-01 | en |
dc.description.abstract | The rising number of flooding events combined with increased urbanization is contributing to significant economic losses due to damages to structures and infrastructures. Here we present a method for producing all weather maps of flood inundation using a combination of synthetic aperture radar (SAR) remote sensing data and machine learning methods that can be used to provide information on the evolution of flood hazards to DisasterAware©, a global alerting system, that is used to disseminate flood risk information to stakeholders across the globe. While these efforts are still in development, a case study is presented for the major flood event associated with Hurricane Harvey and associated floods that impacted Houston, TX in August of 2017. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 558-561 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/IGARSS47720.2021.9553601 | en |
dc.identifier.isbn | 9781665403696 | en |
dc.identifier.uri | https://hdl.handle.net/10919/118097 | en |
dc.identifier.volume | 2021-July | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Public Domain (U.S.) | en |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | en |
dc.subject | Synthetic aperture radar | en |
dc.subject | Flood characterization | en |
dc.subject | Flood inundation | en |
dc.subject | Machine learning | en |
dc.subject | Geospatial data fusion | en |
dc.title | A Machine Learning Approach to Flood Depth and Extent Detection Using Sentinel 1A/B Synthetic Aperture Radar | en |
dc.title.serial | International Geoscience and Remote Sensing Symposium (IGARSS) | en |
dc.type | Conference proceeding | en |
dc.type.dcmitype | Text | en |
dc.type.other | Conference Proceeding | en |
pubs.finish-date | 2021-07-16 | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Science | en |
pubs.organisational-group | /Virginia Tech/Science/Geosciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Science/COS T&R Faculty | en |
pubs.start-date | 2021-07-11 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_Machine_Learning_Approach_to_Flood_Depth_and_Extent_Detection_Using_Sentinel_1A_B_Synthetic_Aperture_Radar.pdf
- Size:
- 634.06 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1