Geochemical investigation of the co-evolution of life and environment in the Neoproterozoic Era

dc.contributor.authorKang, Junyaoen
dc.contributor.committeechairXiao, Shuhaien
dc.contributor.committeememberGill, Benjamin C.en
dc.contributor.committeememberReid, Rachelen
dc.contributor.committeememberSchreiber, Madeline E.en
dc.description.abstractThe co-evolution of life and the environment stands as a cornerstone in Earth's 4.5-billion-year history. Environmental fluctuations have wielded substantial influence over biological evolution, while life forms have, in turn, reshaped Earth's surface and climate. This dissertation centers on a critical period in Earth's history—the Neoproterozoic Era—when profound environmental shifts potentially catalyzed pivotal eukaryotic evolutionary events. By delving deeper into Neoproterozoic paleoenvironments, I aim at a clearer understanding of life-environment co-evolution in this crucial era. The first chapter focuses on an important juncture—the transition from prokaryote to eukaryote dominance in marine ecosystems during the Tonian Period (1000 Ma to 720 Ma). To assess whether the availability of nitrate, an important macro-nutrient, played a critical role in this evolutionary event, nitrogen isotope compositions (δ<sup>15</sup>N) of marine carbonates from the early Tonian (ca. 1000 Ma to ca. 800 Ma) Huaibei Group in North China were measured. The data indicate nitrate limitation in early Neoproterozoic oceans. Further, a compilation of Proterozoic sedimentary δ<sup>15</sup>N data, together with box model simulations, suggest a ~50% increase in marine nitrate availability at ~800 Ma. Limited nitrate availability in early Neoproterozoic oceans may have delayed the ecological rise of eukaryotes until ~800 Ma when increased nitrate supply, together with other environmental and ecological factors, may have contributed to the transition from prokaryote-dominant to eukaryote-dominant marine ecosystems. Recognizing the spatial and temporal variations in Neoproterozoic oceanic environments, the second chapter lays the groundwork for a robust stratigraphic framework for the early Tonian Period. Employing the dynamic time warping algorithm, I constructed a global stratigraphic framework for the early Tonian Period using δ<sup>13</sup>C<sub>carb</sub> data from the North China, São Francisco, and Congo cratons. This exercise confirms the generally narrow range of δ<sup>13</sup>C<sub>carb</sub> fluctuations in the early Tonian, but also confirms the presence of a negative δ<sup>13</sup>C<sub>carb</sub> excursion of notable magnitude (~9 ‰) at ca. 920 Ma in multiple records, suggesting that it was global in scope. This negative excursion, known as the Majiatun excursion, is likely the oldest negative excursion in the Neoproterozoic Era and marks the onset of the dynamic Neoproterozoic carbon cycle. Shifting focus to the late Neoproterozoic, the third chapter delves into the origins of Neoproterozoic superheavy pyrite, whose bulk-sample δ<sup>34</sup>S values are greater than those of contemporaneous seawater sulfate and whose origins remain controversial. Two supervised machine learning algorithms were trained on a large LA-ICP-MS pyrite trace element database to distinguish pyrite of different origins. The analysis validates that two models built on the co-behavior of 12 trace elements (Co, Ni, Cu, Zn, As, Mo, Ag, Sb, Te, Au, Tl, and Pb) can be used to accurately predict pyrite origins. This novel approach was then used to identify the origins of pyrite from two Neoproterozoic sedimentary successions in South China. The first set of samples contains isotopically superheavy pyrite from the Cryogenian Tiesi'ao and Datangpo formations. The second set of samples contains pyritic rims from the Ediacaran Doushantuo Formation; these pyrite rims are associated with fossiliferous chert nodules and do not have superheavy sulfur isotopes. For the superheavy pyrite, the models consistently show high confidence levels in identifying its genesis type, and three out of four samples were inferred to be of sedimentary origins. For the pyritic nodule rims, the models suggest that early diagenetic pyrite was subsequently altered by hydrothermal fluids and therefore shows mixed signals. The third chapter highlights the importance of pyrite trace elements in deciphering and distinguishing the origins of pyrite in sedimentary strata.en
dc.description.abstractgeneralUnderstanding how life and the environment have shaped our planet's story over 4.5 billion years is like piecing together an intricate puzzle. On the one hand, changes in the environment kickstarted big shifts in how life evolved. On the other hand, living creatures have also left their mark on Earth's landscapes and climate. This dissertation focuses on unraveling the mysterious Neoproterozoic Era (1 billion to 538 million years ago), a time when Earth saw some of its most dramatic changes. A significant aspect of my investigation delves into the evolutionary dynamics within ancient marine ecosystems. Specifically, I'm exploring a critical juncture when organisms with more complex cellular structures, known as eukaryotes, became ecologically more important than prokaryotic life forms in many aspects of Earth systems. By examining ancient rock formations from China, I have found evidence suggesting that nitrate, a vital nutrient, was scarce in the Neoproterozoic oceans. However, around 800 million years ago, there appears to have been a significant surge in nitrate availability. This surge potentially catalyzed a pivotal phase in evolution, possibly driving the shift from prokaryote to eukaryote dominance in these ancient waters. Second, there is a challenge to delineate a robust timeline for the early Neoproterozoic Era. Imagine trying to piece together a story from a time when there were no calendars or clear dates. Employing advanced statistical methods and comparing chemical signals preserved in carbonate rocks from disparate global locations, I endeavor to craft a coherent timeline for this crucial period. Within this timeline, a noteworthy anomaly in the carbon cycle emerged around 920 million years ago known as the Majiatun excursion. This anomaly represents a significant shift in the Neoproterozoic carbon cycle. Furthermore, my investigation plunges into the geochemistry of sulfur, an important element in shaping ancient marine environments. Certain sedimentary rocks harbor anomalous sulfur isotope signatures in the mineral pyrite (also known as fool's gold), hinting at dramatic environmental transformations during the late Neoproterozoic. Employing advanced analytical techniques and machine learning methodologies, I seek to discern the origins and implications of these anomalous sulfur isotope signals found in pyrite, unraveling their significance in reconstructing the environmental dynamics of ancient oceans.en
dc.description.degreeDoctor of Philosophyen
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.subjectNitrogen Isotopeen
dc.subjectIron Speciationen
dc.subjectCarbon Isotopeen
dc.subjectNorth China Cratonen
dc.subjectSulfur Isotopeen
dc.subjectTrace Elementen
dc.subjectMachine Learningen
dc.subjectRandom Foresten
dc.titleGeochemical investigation of the co-evolution of life and environment in the Neoproterozoic Eraen
dc.typeDissertationen Polytechnic Institute and State Universityen of Philosophyen


Original bundle
Now showing 1 - 1 of 1
25.41 MB
Adobe Portable Document Format