Methodology for contamination detection and reduction in fermentation processes using machine learning

dc.contributor.authorNguyen, Xuan Dung Jamesen
dc.contributor.authorLiu, Y. A.en
dc.contributor.authorMcDowell, Christopher C.en
dc.contributor.authorDooley, Lukeen
dc.date.accessioned2026-01-15T20:03:15Zen
dc.date.available2026-01-15T20:03:15Zen
dc.date.issued2025-09-01en
dc.description.abstractThis paper demonstrates an accurate and efficient methodology for fermentation contamination detection and reduction using two machine learning (ML) methods, including one-class support vector machine and autoencoders. We also optimize as many hyperparameters as possible prior to the training of the ML models to improve the model accuracy and efficiency, and choose a Python platform called Optuna, to enable the parallel execution of hyperparameter optimization (HPO). We recommend using Bayesian optimization with hyperband algorithm to carry out HPO. Results show that we can predict contaminated fermentation batches with recall up to 1.0 without sacrificing the precision and specificity of non-contaminated batches, which read up to 0.96 and 0.99, respectively. One-class support vector machine outperforms autoencoders in terms of precision and specificity even though they both achieve an outstanding recall of 1.0. These models demonstrate high accuracy in detecting contamination without requiring labeled contaminated data and are suitable for integration into real-time fermentation monitoring systems with minimal latency and retraining needs. In addition, we benchmark our ML methods against a traditional threshold-based contamination detection approach (mean ± 3 σ rule) to quantify the added value of using data-driven models. Finally, we identify important independent variables contributing to the contaminated batches and give recommendations on how to regulate them to reduce the likelihood of contamination.en
dc.description.versionPublished versionen
dc.format.extent17 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1007/s00449-025-03194-6en
dc.identifier.eissn1615-7605en
dc.identifier.issn1615-7591en
dc.identifier.issue9en
dc.identifier.orcidLiu, Yih-An [0000-0002-8050-8343]en
dc.identifier.orcidMcDowell, Christopher [0009-0000-5539-3241]en
dc.identifier.other10.1007/s00449-025-03194-6 (PII)en
dc.identifier.pmid40569455en
dc.identifier.urihttps://hdl.handle.net/10919/140831en
dc.identifier.volume48en
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/40569455en
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectContaminationen
dc.subjectFermentation processesen
dc.subjectMachine learningen
dc.subjectSHAP feature importanceen
dc.subjectHyperparameter optimizationen
dc.subject.meshBayes Theoremen
dc.subject.meshFermentationen
dc.subject.meshAlgorithmsen
dc.subject.meshMachine Learningen
dc.subject.meshSupport Vector Machineen
dc.titleMethodology for contamination detection and reduction in fermentation processes using machine learningen
dc.title.serialBioprocess and Biosystems Engineeringen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherEarly Accessen
dc.type.otherJournalen
dcterms.dateAccepted2025-06-12en
pubs.organisational-groupVirginia Techen
pubs.organisational-groupVirginia Tech/Engineeringen
pubs.organisational-groupVirginia Tech/Engineering/Chemical Engineeringen
pubs.organisational-groupVirginia Tech/Alumni Distinguished Professorsen
pubs.organisational-groupVirginia Tech/All T&R Facultyen
pubs.organisational-groupVirginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Methodology for contamination detection and reduction in fermentation processes using machine learning.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: