Recovery in Major Depressive Disorder: Neural and Clinical Perspectives

TR Number

Date

2021-06-24

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Major depressive disorder (MDD) is considered the current leading cause of disability worldwide (Friedrich, 2017), yet the recovery process in MDD, including neurobiological underpinnings, clinical features and optimal approaches to treatment remains ambiguous. Current definitions of recovery are disputed and involve measures considered subjective in nature, such as thresholds for questionnaires and clinical interviews of symptoms and their duration (De Zwart and Jeronimus, 2019; Fava et al., 2007; Keller, 2003, 2004). Symptom-based measures, although informative of clinical presentation, are not informative of neurobiological underpinnings that may persist even when symptoms are reduced. Indeed, even after treatment, persistent residual symptoms, impairments in quality of life, and vulnerabilities for future return to more severe psychopathology persist (Gotlib and Hammen, 2008; IsHak et al., 2011; Judd et al., 1998a; Kennedy et al., 2004; Kennedy and Foy, 2005; Kennedy and Paykel, 2004). Without assessment of neural mechanisms of recovery in MDD, efforts toward developing novel treatment approaches that are able to address neural processes of illness and to provide sustained remission are slowed. The following collection of studies provide neural and clinical insights into MDD recovery and relate findings to potential treatment approaches that are optimized to individual differences in symptoms and neural functioning and able to address neural vulnerabilities to provide sustained remission. In pursuit of individualized treatment selection in MDD, study one involved a meta-analysis of prior prognostic fMRI studies of response to cognitive behavioral therapy (CBT) or a selective serotonin reuptake inhibitor (SSRI) in MDD. Study one also reported on the application of resulting meta-analytic regions (subgenual and perigenual anterior cingulate cortex) in a confirmatory MDD sample. Although regions showed some predictive potential in the confirmatory sample, when predicting SSRI response, effects were inconsistent with prior studies, suggesting methodological confounds may hinder ready translation. In an assessment of the course of MDD, the second study documented depression symptoms and quality of life across 9-14 years after acute treatment (CBT or SSRI) and found that persistent residual depression symptoms and quality of life deficits were common. In light of the normality of chronic symptoms and impairment, the third study evaluated neural features of treatment (CBT) resistance in MDD within the context of neural mechanisms of change. The third study found a vermis-centered cerebellar cluster that was unresponsive to CBT, whereas prefrontal and parietal cortical regions were responsive, providing support of prior theories that CBT directly affects cognitive control and cortical regulatory processes in contrast to salience-driven subcortical functioning (Clark and Beck, 2010; DeRubeis et al., 2008; Frewen et al., 2008; Mayberg, 2003). In consideration of findings, clinical recommendations that pertain to treating residual symptoms and associated neural features toward asymptomatic remission are provided. Future research directions are also provided regarding neuroscience informed precision medicine, current therapy and medication practices, and the larger picture of MDD chronicity broadly.

Description

Keywords

Major Depressive Disorder, Recovery, Remission, fMRI, Neuroimaging, Treatment, Cognitive Therapy, SSRIs, Antidepressant, Quality of Life

Citation