Interpretable Machine Learning of Chemical Bonding at Solid Surfaces
dc.contributor.author | Omidvar, Noushin | en |
dc.contributor.author | Pillai, Hemanth Somarajan | en |
dc.contributor.author | Wang, Shih-Han | en |
dc.contributor.author | Mou, Tianyou | en |
dc.contributor.author | Wang, Siwen | en |
dc.contributor.author | Athawale, Andy | en |
dc.contributor.author | Achenie, Luke E. K. | en |
dc.contributor.author | Xin, Hongliang | en |
dc.date.accessioned | 2022-02-13T00:47:42Z | en |
dc.date.available | 2022-02-13T00:47:42Z | en |
dc.date.issued | 2021-11-25 | en |
dc.date.updated | 2022-02-13T00:47:33Z | en |
dc.description.abstract | Understanding the nature of chemical bonding and its variation in strength across physically tunable factors is important for the development of novel catalytic materials. One way to speed up this process is to employ machine learning (ML) algorithms with online data repositories curated from high-throughput experiments or quantum-chemical simulations. Despite the reasonable predictive performance of ML models for predicting reactivity properties of solid surfaces, the ever-growing complexity of modern algorithms, e.g., deep learning, makes them black boxes with little to no explanation. In this Perspective, we discuss recent advances of interpretable ML for opening up these black boxes from the standpoints of feature engineering, algorithm development, and post hoc analysis. We underline the pivotal role of interpretability as the foundation of next-generation ML algorithms and emerging AI platforms for driving discoveries across scientific disciplines. | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 11476-11487 | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1021/acs.jpclett.1c03291 | en |
dc.identifier.eissn | 1948-7185 | en |
dc.identifier.issn | 1948-7185 | en |
dc.identifier.issue | 46 | en |
dc.identifier.orcid | Achenie, Luke [0000-0001-9850-5346] | en |
dc.identifier.orcid | Xin, Hongliang [0000-0001-9344-1697] | en |
dc.identifier.pmid | 34793170 | en |
dc.identifier.uri | http://hdl.handle.net/10919/108327 | en |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | American Chemical Society | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/34793170 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | 02 Physical Sciences | en |
dc.subject | 03 Chemical Sciences | en |
dc.title | Interpretable Machine Learning of Chemical Bonding at Solid Surfaces | en |
dc.title.serial | Journal of Physical Chemistry Letters | en |
dc.type | Article | en |
dc.type.dcmitype | Text | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Chemical Engineering | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Durelle Scott | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Omidvar et al. 2021 - Interpretable Machine Learning of Chemical Bonding at Solid Surfaces.pdf
- Size:
- 5.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version