Biological control of the invasive Ailanthus altissima (tree-of-heaven) in Virginia using naturally occurring Verticillium wilt fungi
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The invasive tree-of-heaven, Ailanthus altissima (Miller) Swingle, is widespread and damaging throughout North America. Verticillium wilt disease is emerging as a potentially exciting biological control option for this difficult to control tree. In Virginia, Verticillium nonalfalfae has been confirmed causing significant mortality to A. altissima, while V. dahliae is suspected to be present and causing lower levels of disease. Little else is known regarding these two fungal species in this state. The purpose of this research was to gain a better understanding of how Verticillium wilt impacts A. altissima and its potential as a biological control agent. We first confirmed V. dahliae's presence in Virginia and its pathogenicity to A. altissima using Koch's postulates. We then completed a regional field-inoculation experiment to show that V. nonalfalfae effectively kills and spreads to adjacent A. altissima, regardless of V. dahliae presence or other climate and stand variables. Additionally, we showed that V. dahliae causes lower levels of disease than V. nonalfalfae, and does not spread rapidly. Next, we surveyed all Virginia A. altissima stands known to be naturally infected with V. nonalfalfae to determine whether V. nonalfalfae persists long-term, that it considerably reduces A. altissima numbers, and that its local prevalence may be higher than initially suspected. However, we were unable to infect A. altissima seedlings using soil collected at these infested sites, suggesting that V. nonalfalfae's survival within field soil may be limited. Lastly, using paired A. altissima invaded-uninvaded sites, we found that A. altissima presence is associated with a decreased proportion of native plants and species in the woody and herbaceous understory, but not the germinable seedbank. Furthermore, we found that this impact on the woody understory appears to increase over time, supporting early management actions and helping us predict post-management restoration needs. We conclude that V. nonalfalfae has a high potential of successfully limiting A. altissima throughout Virginia, supporting its registration as a biopesticide.