Learning Consistent Visual Synthesis

Files

TR Number

Date

2022-08-22

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

With the rapid development of photography, we can easily record the 3D world by taking photos and videos. In traditional images and videos, the viewer observes the scene from fixed viewpoints and cannot navigate the scene or edit the 2D observation afterward.

Thus, visual content editing and synthesis become an essential task in computer vision. However, achieving high-quality visual synthesis often requires a complex and expensive multi-camera setup. This is not practical for daily use because most people only have one cellphone camera. But a single camera, on the contrary, could not provide enough multi-view constraints to synthesize consistent visual content.

Therefore, in this thesis, I address this challenging single-camera visual synthesis problem by leveraging different regularizations. I study three consistent synthesis problems: time-consistent synthesis, view-consistent synthesis, and view-time-consistent synthesis. I show how we can take cellphone-captured monocular images and videos as input to model the scene and consistently synthesize new content for an immersive viewing experience.

Description

Keywords

Computer vision, Computational photography, View synthesis, Temporal consistency

Citation