VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Intelligent Knowledge Distribution for Multi-Agent Communication, Planning, and Learning

TR Number

Date

2020-05-06

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This dissertation addresses a fundamental question of multi-agent coordination: what infor- mation should be sent to whom and when, with the limited resources available to each agent? Communication requirements for multi-agent systems can be rather high when an accurate picture of the environment and the state of other agents must be maintained. To reduce the impact of multi-agent coordination on networked systems, e.g., power and bandwidth, this dissertation introduces new concepts to enable Intelligent Knowledge Distribution (IKD), including Constrained-action POMDPs (CA-POMDP) and concurrent decentralized (CoDec) POMDPs for an agnostic plug-and-play capability for fully autonomous systems.

Each agent runs a CoDec POMDP where all the decision making (motion planning, task allocation, asset monitoring, and communication) are separated into concurrent individual MDPs to reduce the combinatorial explosion of the action and state space while maintaining dependencies between the models. We also introduce the CA-POMDP with action-based constraints on partially observable Markov decision processes, rewards driven by the value of information, and probabilistic constraint satisfaction through discrete optimization and Markov chain Monte Carlo analysis. IKD is adapted real-time through machine learning of the actual environmental impacts on the behavior of the system, including collaboration strategies between autonomous agents, the true value of information between heterogeneous systems, observation probabilities and resource utilization.

Description

Keywords

Multi-agent System, Distributed Decision Making, Markov Decision Processes, Relational Learning, Probabilistic Constraint Satisfaction, Wireless Communications

Citation