Intelligent Knowledge Distribution for Multi-Agent Communication, Planning, and Learning
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This dissertation addresses a fundamental question of multi-agent coordination: what infor- mation should be sent to whom and when, with the limited resources available to each agent? Communication requirements for multi-agent systems can be rather high when an accurate picture of the environment and the state of other agents must be maintained. To reduce the impact of multi-agent coordination on networked systems, e.g., power and bandwidth, this dissertation introduces new concepts to enable Intelligent Knowledge Distribution (IKD), including Constrained-action POMDPs (CA-POMDP) and concurrent decentralized (CoDec) POMDPs for an agnostic plug-and-play capability for fully autonomous systems.
Each agent runs a CoDec POMDP where all the decision making (motion planning, task allocation, asset monitoring, and communication) are separated into concurrent individual MDPs to reduce the combinatorial explosion of the action and state space while maintaining dependencies between the models. We also introduce the CA-POMDP with action-based constraints on partially observable Markov decision processes, rewards driven by the value of information, and probabilistic constraint satisfaction through discrete optimization and Markov chain Monte Carlo analysis. IKD is adapted real-time through machine learning of the actual environmental impacts on the behavior of the system, including collaboration strategies between autonomous agents, the true value of information between heterogeneous systems, observation probabilities and resource utilization.