Surgery spaces of crystallographic groups
dc.contributor.author | Yamasaki, Masayuki | en |
dc.contributor.committeechair | Quinn, Frank | en |
dc.contributor.committeemember | Arnold, Jesse T. | en |
dc.contributor.committeemember | McCoy, Robert A. | en |
dc.contributor.committeemember | Olin, Robert F. | en |
dc.contributor.committeemember | Snider, R.L. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2017-01-30T21:23:31Z | en |
dc.date.available | 2017-01-30T21:23:31Z | en |
dc.date.issued | 1982 | en |
dc.description.abstract | Let Γ be a crystallographic group acting on the n-dimensional Euclidean space. In this dissertation, the surgery obstruction groups of Γ are computed in terms of certain sheaf homology groups defined by F. Quinn, when Γ has no 2-torsion. The main theorem is : Theorem : If a crystallographic group Γ has no 2-torsion, there is a natural isomorphism a : H<sub>*</sub>(R<sup>n</sup> /Γ; L(p)) → L<sub>*</sub><sup>-∞</sup>(Γ). | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iii, 103, [1] leaves | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/74656 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 9184851 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1982.Y925 | en |
dc.subject.lcsh | Crystallography, Mathematical | en |
dc.subject.lcsh | Surgery (Topology) | en |
dc.subject.lcsh | Homotopy equivalences | en |
dc.subject.lcsh | Manifolds (Mathematics) | en |
dc.title | Surgery spaces of crystallographic groups | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1