VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Star formation in unobscured quasars

TR Number

Date

2021-08-30

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

It is now well established that a substantial fraction of all galaxy assembly occurs in intense bursts of star formation and black hole accretion, but the role of these two modes and how much they affect one another remains unclear. We thus investigate this in three complementary studies. In the first, we assemble a sample of 513 quasars identified by the Sloan Digital Sky Survey with detections by Herschel. These objects span a redshift range of 0 < z < 4, and their SEDs give a mean SFR of ~1000M☉/year. When comparing these SFRs to the intrinsic properties of the quasars, we find no clear connections between the quasars and the ongoing star formation events in their hosts. We then look for evidence of AGN feedback in broad absorption line (BAL) quasars, as such features are indicative of outflowing material. We find that high-ionization BAL quasars have indistinguishable properties to those of classical quasars. In our second study, which describes an iron low-ionization BAL quasar, SDSS J121441.42-000137.8, our results are again consistent with no feedback. Thus, it seems unlikely that feedback plays a dominant role in quenching star formation at the extreme SFRs seen in our BAL objects. We lastly study the host of an optically-bright quasar, SDSS J160705.16+355358.6, with evidence of an ongoing merger. We create the Point Spread Function (PSF) using a star that is in the same part of the field as our object, a method which is relatively unexplored. By subtracting the PSF, we are able to extract some of the host properties. We compare two PSF creation methods and find the empirical approach to be superior. Fits to the SEDs of the two galaxies are consistent with both falling on or above the main sequence of star formation. It is additionally plausible that these two galaxies could coalesce into a single massive quiescent galaxy by z ~ 2, and thus serve as progenitors to this class of galaxy that has proven challenging to our understanding of galaxy assembly.

Description

Keywords

Active Galactic Nuclei, Quasars, Starbursts, Galaxy Assembly

Citation