Parkinson’s Disease Tremor Detection in the Wild Using Wearable Accelerometers

dc.contributor.authorSan-Segundo, Rubénen
dc.contributor.authorZhang, Adaen
dc.contributor.authorCebulla, Alexanderen
dc.contributor.authorPanev, Stanislaven
dc.contributor.authorTabor, Griffinen
dc.contributor.authorStebbins, Katelynen
dc.contributor.authorMassa, Robyn E.en
dc.contributor.authorWhitford, Andrewen
dc.contributor.authorde la Torre, Fernandoen
dc.contributor.authorHodgins, Jessicaen
dc.contributor.departmentSchool of Medicineen
dc.date.accessioned2020-10-27T13:15:00Zen
dc.date.available2020-10-27T13:15:00Zen
dc.date.issued2020-10-14en
dc.date.updated2020-10-26T14:22:04Zen
dc.description.abstractContinuous in-home monitoring of Parkinson’s Disease (PD) symptoms might allow improvements in assessment of disease progression and treatment effects. As a first step towards this goal, we evaluate the feasibility of a wrist-worn wearable accelerometer system to detect PD tremor in the wild (uncontrolled scenarios). We evaluate the performance of several feature sets and classification algorithms for robust PD tremor detection in laboratory and wild settings. We report results for both laboratory data with accurate labels and wild data with weak labels. The best performance was obtained using a combination of a pre-processing module to extract information from the tremor spectrum (based on non-negative factorization) and a deep neural network for learning relevant features and detecting tremor segments. We show how the proposed method is able to predict patient self-report measures, and we propose a new metric for monitoring PD tremor (i.e., percentage of tremor over long periods of time), which may be easier to estimate the start and end time points of each tremor event while still providing clinically useful information.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationSan-Segundo, R.; Zhang, A.; Cebulla, A.; Panev, S.; Tabor, G.; Stebbins, K.; Massa, R.E.; Whitford, A.; de la Torre, F.; Hodgins, J. Parkinson’s Disease Tremor Detection in the Wild Using Wearable Accelerometers. Sensors 2020, 20, 5817.en
dc.identifier.doihttps://doi.org/10.3390/s20205817en
dc.identifier.urihttp://hdl.handle.net/10919/100709en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectin-the-wild supervisionen
dc.subjectParkinson’s diseaseen
dc.subjecttremor detectionen
dc.subjectwearable accelerometersen
dc.titleParkinson’s Disease Tremor Detection in the Wild Using Wearable Accelerometersen
dc.title.serialSensorsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.dcmitypeStillImageen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-20-05817-v2.pdf
Size:
4.97 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: