The Born-Oppenheimer approximation in scattering theory
dc.contributor.author | Kargol, Armin | en |
dc.contributor.committeechair | Hagedorn, George A. | en |
dc.contributor.committeemember | Bowden, Robert L. | en |
dc.contributor.committeemember | Klaus, Martin | en |
dc.contributor.committeemember | Slawny, Joseph | en |
dc.contributor.committeemember | Zweifel, Paul F. | en |
dc.contributor.department | Mathematical Physics | en |
dc.date.accessioned | 2014-03-14T21:09:54Z | en |
dc.date.adate | 2006-03-02 | en |
dc.date.available | 2014-03-14T21:09:54Z | en |
dc.date.issued | 1994-05-05 | en |
dc.date.rdate | 2006-03-02 | en |
dc.date.sdate | 2006-03-02 | en |
dc.description.abstract | We analyze the Schrödinger equation i𝜖 ¬<sup>2</sup>â /â tΨ = H(𝜖)Ψ, where H(â ¬) = - f24 Î x + h(X) is the hamiltonian of a molecular system consisting of nuclei with masses of order 𝜖¬<sup>-4</sup> and electrons with masses of order 1. The Born-Oppenheimer approximation consists of the adiabatic approximation to the motion of electrons and the semiclassical approximation to the time evolution of nuclei. The quantum propagator associated with this Schrödinger Equation is exp(-itH(â ¬)/â ¬<sup>2</sup>). We use the Born-Oppenheimer method to find the leading order asymptotic expansion in â ¬ to exp(_it~(t:»Ψ, i.e., we find Ψ(t) such that: (1) We show that if H(𝜖) describes a diatomic Molecule with smooth short range potentials, then the estimate (1) is uniform in time; hence the leading order approximation to the wave operators can be constructed. We also comment on the generalization of our method to polyatomic molecules and to Coulomb systems. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | v, 77 leaves | en |
dc.format.medium | BTD | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.other | etd-03022006-093405 | en |
dc.identifier.sourceurl | http://scholar.lib.vt.edu/theses/available/etd-03022006-093405/ | en |
dc.identifier.uri | http://hdl.handle.net/10919/37449 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.relation.haspart | LD5655.V856_1994.K3734.pdf | en |
dc.relation.isformatof | OCLC# 31183670 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1994.K3734 | en |
dc.subject.lcsh | Born approximation | en |
dc.title | The Born-Oppenheimer approximation in scattering theory | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematical Physics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- LD5655.V856_1994.K3734.pdf
- Size:
- 2.29 MB
- Format:
- Adobe Portable Document Format
- Description: