VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

A passive diffusion model of fluorescein derivatives in an in vitro human brain microvascular endothelial cell (HBMEC) monolayer

dc.contributor.authorSimmons, Jamelle M.en
dc.contributor.authorLee, Yong Wooen
dc.contributor.authorAchenie, Luke E. K.en
dc.contributor.departmentBiomedical Engineering and Mechanicsen
dc.date.accessioned2019-07-24T17:19:02Zen
dc.date.available2019-07-24T17:19:02Zen
dc.date.issued2018-09-29en
dc.description.abstractEukaryotic cells have a protective plasma membrane, which restricts the free movement of molecules from the external environment to the internal environment. This study aims to computationally model the transport of fluorescein derivatives across the monolayer of human brain microvascular endothelial cells (HBMEC). The determination of plausible effective diffusion constants (𝐷eff) will allow models to be built that could be useful beyond in vitro experimentation. Fluorescein-5-isothiocyanate (FITC) modeling produced a 𝐷effrange of 1E-20 to 5E-20 cm²/s at a 1 μm cell monolayer thickness and a 𝐷eff constant near 5E-29 cm²/s at a 5 μm cell monolayer thickness. Both fluorescein and sodium fluorescein (NaFl) modeling at the 1 and 5 μm thicknesses did not produce simulations that closely resembled the HBMEC in vitro model. Overall, it is possible that the fluorescent intensity noted with fluorescein and NaFl may be better explained by a mechanism other than passive diffusion. Simulations of FITC diffusion produced a narrow range of 𝐷eff constants that closely matched the in vitro HBMEC fluorescent intensity.en
dc.description.sponsorshipWe would like to thank the Virginia Tech Initiative for Maximizing Student Development (IMSD) program and the Virginia Tech Center for Autism Research (VTCAR) for partial support of this research project.en
dc.format.extent10 pagesen
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.21595/jme.2018.20186en
dc.identifier.issn2335-2124en
dc.identifier.issue3en
dc.identifier.urihttp://hdl.handle.net/10919/91956en
dc.identifier.volume6en
dc.language.isoenen
dc.publisherJVEen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectfluorescein-5-isothiocyanateen
dc.subjectfluoresceinen
dc.subjectsodium fluoresceinen
dc.subjectpassive diffusionen
dc.subjectendothelial cellsen
dc.titleA passive diffusion model of fluorescein derivatives in an in vitro human brain microvascular endothelial cell (HBMEC) monolayeren
dc.title.serialJournal of Measurements in Engineeringen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JME-6-3-20186.pdf
Size:
758.11 KB
Format:
Adobe Portable Document Format