Bayesian Uncertainty Quantification while Leveraging Multiple Computer Model Runs

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


In the face of spatially correlated data, Gaussian process regression is a very common modeling approach. Given observational data, kriging equations will provide the best linear unbiased predictor for the mean at unobserved locations. However, when a computer model provides a complete grid of forecasted values, kriging will not apply. To develop an approach to quantify uncertainty of computer model output in this setting, we leverage information from a collection of computer model runs (e.g., historical forecast and observation pairs for tropical cyclone precipitation totals) through a Bayesian hierarchical framework. This framework allows us to combine information and account for the spatial correlation within and across computer model output. Using maximum likelihood estimates and the corresponding Hessian matrices for Gaussian process parameters, these are input to a Gibbs sampler which provides posterior distributions for parameters of interest. These samples are used to generate predictions which provide uncertainty quantification for a given computer model run (e.g., tropical cyclone precipitation forecast). We then extend this framework using deep Gaussian processes to allow for nonstationary covariance structure, applied to multiple computer model runs from a cosmology application. We also perform sensitivity analyses to understand which parameter inputs most greatly impact cosmological computer model output.



Gaussian processes, uncertainty quantification, Bayesian statistics, spatial statistics, nonstationary modeling, meteorology, cosmology