An Approach for Computing Parameters for a Lagrangian Nonlinear Maneuvering and Seakeeping Model of Submerged Vessel Motion

dc.contributor.authorJung, Seyongen
dc.contributor.authorBrizzolara, Stefanoen
dc.contributor.authorWoolsey, Craig A.en
dc.date.accessioned2022-01-17T23:14:34Zen
dc.date.available2022-01-17T23:14:34Zen
dc.date.issued2021-07-01en
dc.date.updated2022-01-17T23:14:31Zen
dc.description.abstractIn this study, hydrodynamic forces on a submerged vessel maneuvering near a free surface are determined using a reformulated Lagrangian nonlinear maneuvering and seakeeping model derived using Lagrangian mechanics under ideal flow assumptions. A Lagrangian mechanics maneuvering model is first reformulated to simplify the computation of parameters; then, incident wave effects are incorporated into the reformulation; finally, the parameters are computed using a medium-fidelity time-domain potential-flow panel code. Predictions from the reformulated Lagrangian nonlinear maneuvering and seakeeping model, whose parameters are computed using the methods described here, are compared with direct numerical computations in two steps for a prolate spheroid maneuvering in the longitudinal plane near the free surface. First, the hydrodynamic force and moment predicted by the model are compared with solutions from the panel code for sinusoidal motion in surge, heave, and pitch in calm water. Second, the hydrodynamic force and moment are investigated for cases where the spheroid maneuvers to approach the surface in calm water and in plane progressive waves. To conclude, a physically intuitive formulation of the Lagrangian nonlinear maneuvering and seakeeping model is presented for control applications and simulations.en
dc.description.versionAccepted versionen
dc.format.extentPages 749-764en
dc.format.extent16 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1109/JOE.2021.3052657en
dc.identifier.eissn1558-1691en
dc.identifier.issn0364-9059en
dc.identifier.issue3en
dc.identifier.orcidBrizzolara, Stefano [0000-0002-0189-2456]en
dc.identifier.orcidWoolsey, Craig [0000-0003-3483-7135]en
dc.identifier.urihttp://hdl.handle.net/10919/107705en
dc.identifier.volume46en
dc.language.isoenen
dc.publisherIEEEen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000673500200004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectTechnologyen
dc.subjectPhysical Sciencesen
dc.subjectEngineering, Civilen
dc.subjectEngineering, Oceanen
dc.subjectEngineering, Electrical & Electronicen
dc.subjectOceanographyen
dc.subjectEngineeringen
dc.subjectComputational modelingen
dc.subjectMathematical modelen
dc.subjectForceen
dc.subjectSurface wavesen
dc.subjectSea surfaceen
dc.subjectPredictive modelsen
dc.subjectHydrodynamicsen
dc.subjectHydrodynamic forceen
dc.subjectLagrangian mechanicsen
dc.subjectmaneuvering and seakeepingen
dc.subjectsubmerged vessel dynamicsen
dc.subjectSLENDERen
dc.subjectOceanographyen
dc.subject0906 Electrical and Electronic Engineeringen
dc.subject0911 Maritime Engineeringen
dc.subject0913 Mechanical Engineeringen
dc.titleAn Approach for Computing Parameters for a Lagrangian Nonlinear Maneuvering and Seakeeping Model of Submerged Vessel Motionen
dc.title.serialIEEE Journal of Oceanic Engineeringen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Engineeringen
pubs.organisational-group/Virginia Tech/Engineering/Aerospace and Ocean Engineeringen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Engineering/COE T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jung_2021_An-Approach-for-Computing-Parameters-for-Lagrangian-Nonlinear-Maneuvering-and-Seakeeping-Model-of-Submerged-Vessel-Motion.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
Accepted version