Highly Robust Complex Covariance Estimators With Applications to Sensor Array Processing
dc.contributor.author | Fishbone, Justin A. | en |
dc.contributor.author | Mili, Lamine M. | en |
dc.date.accessioned | 2024-01-24T14:27:49Z | en |
dc.date.available | 2024-01-24T14:27:49Z | en |
dc.date.issued | 2023-03-24 | en |
dc.description.abstract | Many applications in signal processing require the estimation of mean and covariance matrices of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation techniques employed in signal processing, such as M-estimators, provide limited robustness in the multivariate case. For this reason, this paper introduces the signal processing community to the highly robust class of multivariate estimators called multivariate S-estimators. The paper extends multivariate S-estimation theory to the complex-valued domain. The theoretical performances of S-estimators are explored and compared with M-estimators through the practical lens of the minimum variance distortionless response (MVDR) beamformer, and the empirical finite-sample performances of the estimators are explored through the practical lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 208-224 | en |
dc.format.extent | 17 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1109/OJSP.2023.3261806 | en |
dc.identifier.eissn | 2644-1322 | en |
dc.identifier.issn | 2644-1322 | en |
dc.identifier.orcid | Mili, Lamine [0000-0001-6134-3945] | en |
dc.identifier.uri | https://hdl.handle.net/10919/117645 | en |
dc.identifier.volume | 4 | en |
dc.language.iso | en | en |
dc.publisher | IEEE | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Signal processing | en |
dc.subject | Estimation | en |
dc.subject | Covariance matrices | en |
dc.subject | Robustness | en |
dc.subject | Probability density function | en |
dc.subject | Electric breakdown | en |
dc.subject | Symmetric matrices | en |
dc.subject | Complex elliptically symmetric distribution | en |
dc.subject | complex-valued S-estimator | en |
dc.subject | covariance and shape matrix estimation | en |
dc.subject | robust estimation of multivariate location and scatter | en |
dc.subject | Sq-estimator | en |
dc.title | Highly Robust Complex Covariance Estimators With Applications to Sensor Array Processing | en |
dc.title.serial | IEEE Open Journal of Signal Processing | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Electrical and Computer Engineering | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Fishbone_Mili_Highly_Robust_Complex_Covariance_Estimators_With_Applications_to_Sensor_Array_Processing.pdf
- Size:
- 1.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1