Effective Strategies for Preventing and Mitigating Emerging Viruses

TR Number

Date

2023-05-08

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The world is grappling with an escalating risk of viral outbreaks of pandemic proportion, with zoonotic RNA viruses such as chikungunya virus (CHIKV) and SARS-CoV-2 posing significant threats to global health. Several environmental and evolutionary factors have fueled the emergence and spread of infection, creating a constant arms race against emerging pathogens. Current prevention and mitigation strategies are inadequate, necessitating tools to prevent and control viral infections; innovative strategies are needed in the pipeline to address significant challenges. CHIKV is a mosquito-borne virus that has caused millions of disease cases worldwide and is a reemerging threat with increasing potential to become endemic in the US. Currently, there are no licensed treatments available to protect against CHIK disease, making the development of a vaccine crucial. Live-attenuated vaccines (LAVs) have traditionally been a promising strategy due to their high immunogenicity and cost-effectiveness. However, concerns regarding adverse side effects and the potential for viral replication leading to pathogenic reversions or transmission into mosquitoes have limited their use. To that end, we have developed a new generation of safer vaccines by modifying the standard LAV platform through innovative attenuating strategies. Our dual-attenuated platform utilizes a previously developed chimera of CHIKV and the closely related Semliki Forest virus (SFV) as a vaccine backbone which expresses antiviral mouse cytokines IFN-γ or IL-21, as an additional mechanism to control infection. In several mouse models, both cytokine-expressing candidates showed reduced footpad swelling and minimal to no systemic replication or dissemination capacity compared to the parental vaccine post-vaccination. Importantly, these candidates conferred full protection from wildtype CHIK disease. Our IFNγ-expressing vaccine showed the most significant attenuation of viral replication. To understand the underlying mechanism, we identified three IFNγ-regulated antiviral genes (Gbp1/2 and Ido1) that were highly upregulated in 3T3 mouse fibroblasts post-infection with the IFN-γ-expressing candidate but not the parental backbone. To further investigate the role of these genes in restricting viral replication and enhance the clinical relevance of our vaccine platform, we redesigned our vaccine to express human IFNγ (hIFNγ) and performed viral growth kinetics in MRC5 human lung fibroblasts. Our vaccine showed reduced viral replication compared to controls and high expression of human GBP1/2/3 was observed post-infection. Overexpression of these genes demonstrated a direct impact on viral replication against wildtype CHIKV. These findings shed light on the mechanism of action of our vaccine and highlight the potential of targeting IFNγ-regulated antiviral genes for developing effective vaccines against CHIKV. Our results provided a foundation for investigating the broad-use application of IFN-γ against other alphaviruses for vaccine or therapeutic design. We evaluated the effects of increasing levels of exogenous hIFNγ on Mayaro virus (MAYV), Ross River virus (RRV), and Venezuelan Equine Encephalitis virus (VEEV). We observed a positive dose-dependent relationship between hIFNγ and decreasing viral titers for all three viruses. Interestingly, we also observed similar patterns of GBP upregulation with MAYV and RRV, both Old World alphaviruses, but not with VEEV, a New World alphavirus. This finding may indicate an alternative IFNγ-stimulated pathway responsible for controlling different alphaviruses. Overall, these studies establish a fundamental role of IFNγ in controlling viral infection and highlight its potential use in both vaccine and therapeutic intervention. While LAVs are a gold standard for developing immunity against a virus, the urgency of responding to an active and deadly pandemic has promoted the use of faster strategies such as mRNA vaccines. Once the viral sequence was known, these vaccines were comparatively quick to produce for SARS-CoV-2 and prevented millions of disease cases at the height of their introduction. However, the emergence of variants of concerns bypassing previous immunization efforts has demonstrated the need for complementary treatments such as antivirals to control disease. To that end, we evaluated several rhodium organometallic complexes as potential antivirals against SARS-CoV-2. We show that two pentamethylcyclopentadienyl (Cp*) rhodium piano stool complexes, CpRh(ICy)Cl2 and CpRh(dpvm)Cl are non-toxic in Vero E6 and Calu3 cells and reduce SARS-CoV-2 plaque formation up to 99%. These complexes have previously demonstrated high antimicrobial activity against multiple antibiotic-resistance bacteria and with our results, support their potential application as pharmaceuticals, warranting further investigation into their activity.

Description

Keywords

chikungunya virus, CHIKV, alphavirus, vaccination, vaccines, antivirals, SARS-CoV-2, emerging, countermeasures, strategies, interferon-gamma, interleukin-21

Citation