Development of Metallic Fuel Additives and Alloys for Sodium-cooled Fast Reactors

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


The major goal of the work is to develop effective additives for U-10Zr (wt.%) metallic fuel to mitigate the fuel-cladding chemical interactions (FCCIs) due to fission product lanthanides and to optimize the fuel phase mainly by lowering the gamma-onset temperature. The additives Sb, Mo, Nb, and Ti have been investigated. Metallic fuels with one or two of the additives and with or without lanthanide fission products were fabricated. In this study, Ce was selected as the representative lanthanide fission product. A series of tests and characterizations were carried out on the additive-bearing fuels, including annealing, diffusion coupling, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and differential scanning calorimetry (DSC). Sb was investigated to mitigate FCCIs because available studies show its potential as a lanthanide immobilizer. This work extends the knowledge of Sb in U-10Zr, including its effect in the Zr-free region. Sb forms precipitates with fuel constituents, either U or Zr. However, it combines with the lanthanide fission product Ce when Ce is present. Those Sb-precipitates are found to be stable upon annealing, and are compatible with the cladding. The additive does not change the phase transition of U-10Zr. Mo, Nb, and Ti have been investigated for phase optimization based on the known characteristics shown in the binary phase diagrams. The quaternary alloys, i.e., two Mo-bearing alloys and two Nb-bearing alloys, were investigated. Compared to U-10Zr, a few weight percentages of Zr are replaced by those additives in the quarternary alloys. The solid-state phase transitions were determined (alpha and U2Ti transfer into gamma). The transition temperature varies depending on the compositions. The Mo-bearing alloys have lower -onset temperatures than the Nb-bearing alloys. All of them have lower gamma-onset temperatures than that of U-10Zr. Since low gamma-onset temperature is favorable, the results indicate that the fuel phase can be optimized by the replacement of a few weight percentages of Zr into those additives. All the experiments were out-of-pile tests. Therefore, in-pile experiments will be necessary to fully evaluate the performance of the additives in the future.



SFR, Metallic fuel, FCCIs, Microstructure, Phase transition