Partitioned exponential methods for coupled multiphysics systems
dc.contributor.author | Narayanamurthi, Mahesh | en |
dc.contributor.author | Sandu, Adrian | en |
dc.date.accessioned | 2022-02-27T04:14:46Z | en |
dc.date.available | 2022-02-27T04:14:46Z | en |
dc.date.issued | 2021-03-01 | en |
dc.date.updated | 2022-02-27T04:14:44Z | en |
dc.description.abstract | Multiphysics problems involving two or more coupled physical phenomena are ubiquitous in science and engineering. This work develops a new partitioned exponential approach for the time integration of multiphysics problems. After a possible semi-discretization in space, the class of problems under consideration is modeled by a system of ordinary differential equations where the right-hand side is a summation of two component functions, each corresponding to a given set of physical processes. The partitioned-exponential methods proposed herein evolve each component of the system via an exponential integrator, and information between partitions is exchanged via coupling terms. The traditional approach to constructing exponential methods, based on the variation-of-constants formula, is not directly applicable to partitioned systems. Rather, our approach to developing new partitioned-exponential families is based on a general-structure additive formulation of the schemes. Two method formulations are considered, one based on a linear-nonlinear splitting of the right hand component functions, and another based on approximate Jacobians. The paper develops classical (non-stiff) order conditions theory for partitioned exponential schemes based on particular families of T-trees and B-series theory. Several practical methods of third order are constructed that extend the Rosenbrock-type and EPIRK families of exponential integrators. Several implementation optimizations specific to the application of these methods to reaction-diffusion systems are also discussed. Numerical experiments reveal that the new partitioned-exponential methods can perform better than traditional unpartitioned exponential methods on some problems. | en |
dc.description.notes | Fixed a definition and other minor typos. Results remain unchanged | en |
dc.description.version | Accepted version | en |
dc.format.extent | Pages 178-207 | en |
dc.format.extent | 30 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1016/j.apnum.2020.10.020 | en |
dc.identifier.eissn | 1873-5460 | en |
dc.identifier.issn | 0168-9274 | en |
dc.identifier.orcid | Sandu, Adrian [0000-0002-5380-0103] | en |
dc.identifier.uri | http://hdl.handle.net/10919/108900 | en |
dc.identifier.volume | 161 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000613718300014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Mathematics, Applied | en |
dc.subject | Mathematics | en |
dc.subject | Multiphysics systems | en |
dc.subject | Exponential time integration | en |
dc.subject | Butcher series | en |
dc.subject | Partitioned methods | en |
dc.subject | math.NA | en |
dc.subject | cs.CE | en |
dc.subject | cs.NA | en |
dc.subject | 65L05, 65L04, 65F60, 65M22, 65Y05 | en |
dc.subject | 0102 Applied Mathematics | en |
dc.subject | 0103 Numerical and Computational Mathematics | en |
dc.subject | 0802 Computation Theory and Mathematics | en |
dc.subject | Numerical & Computational Mathematics | en |
dc.title | Partitioned exponential methods for coupled multiphysics systems | en |
dc.title.serial | Applied Numerical Mathematics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/Computer Science | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1908.09434v2.pdf
- Size:
- 1.49 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version