On Distributionally Robust Chance Constrained Program with Wasserstein Distance
dc.contributor.author | Xie, W. | en |
dc.contributor.department | Industrial and Systems Engineering | en |
dc.date.accessioned | 2018-07-25T20:44:20Z | en |
dc.date.available | 2018-07-25T20:44:20Z | en |
dc.date.issued | 2018-06-21 | en |
dc.description.abstract | This paper studies a distributionally robust chance constrained program (DRCCP) with Wasserstein ambiguity set, where the uncertain constraints should satisfy with a probability at least a given threshold for all the probability distributions of the uncertain parameters within a chosen Wasserstein distance from an empirical distribution. In this work, we investigate equivalent reformulations and approximations of such problems. We first show that a DRCCP can be reformulated as a conditional-value-at-risk constrained optimization problem, and thus admits tight inner and outer approximations. When the metric space of uncertain parameters is a normed vector space, we show that a DRCCP of bounded feasible region is mixed integer representable by introducing big-M coefficients and additional binary variables. For a DRCCP with pure binary decision variables, by exploring submodular structure, we show that it admits a big-M free formulation and can be solved by branch and cut algorithm. This result can be generalized to mixed integer DRCCPs. Finally, we present a numerical study to illustrate effectiveness of the proposed methods. | en |
dc.description.notes | 28 pages | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.orcid | Xie, W [0000-0001-5157-1194] | en |
dc.identifier.uri | http://hdl.handle.net/10919/84391 | en |
dc.language.iso | en | en |
dc.relation.uri | http://arxiv.org/abs/1806.07418v1 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | math.OC | en |
dc.subject | 90C15, 90C22, 90C59 | en |
dc.title | On Distributionally Robust Chance Constrained Program with Wasserstein Distance | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering | en |
pubs.organisational-group | /Virginia Tech/Engineering/COE T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Engineering/Industrial and Systems Engineering | en |