Quantum Nonequilibrium Steady States Induced by Repeated Interactions
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We study the steady state of a finite XX chain coupled at its boundaries to quantum reservoirs made of free spins that interact one after the other with the chain. The two-point correlations are calculated exactly, and it is shown that the steady state is completely characterized by the magnetization profile and the associated current. Except at the boundary sites, the magnetization is given by the average of the reservoirs' magnetizations. The steady-state current, proportional to the difference in the reservoirs' magnetizations, shows a nonmonotonic behavior with respect to the system-reservoir coupling strength, with an optimal current state for a finite value of the coupling. Moreover, we show that the steady state can be described by a generalized Gibbs state.