VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Protection of Rear Seat Occupants Using Finite Element Analysis

TR Number

Date

2020-12-10

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The majority of car crash deaths occur in the front seats because the majority of occupants sit in the front seats. Traditionally, the rear seats were safer than the front seats because a front seated occupant would be closer to rigid structures such as the steering wheel, and they would be closer to the location of the impact. Therefore, government crash test regulations as well as academic and industry testing up to this point have principally focused on the front seats. Since the beginning of efforts to make cars safer, innovations were applied to the front seats first. Only some of these safety innovations have transitioned into the rear seats. Over the years, the front seats have gotten much safer due to advanced seatbelts with pretentioners and load limiters, airbags surrounding the driver, and structural changes to the vehicle frame to prevent intrusion into the occupant compartment. At the same time, occupant safety in the rear seats has also improved, however at only a fraction of the improvement of the front seats. With modern vehicles, the front seats have actually become safer than the rear seats for certain occupants and specific crash types (e.g., adult occupants in frontal crash). The lagging performance of the rear seats represents a problem because thousands of rear-seated occupants are injured or killed each year. With the rise in autonomous driving systems, the amount of occupants sitting in the rear seats, and therefore sustaining injury, could increase dramatically.

In this dissertation, rear seats of a range of current vehicles were reconstructed to examine injury risk with the finite element models of two anthropomorphic test devices. These models showed a wide range of injury risks in the reconstructed seats. They were also able to show results similar to sled impact tests with the same vehicles. Knowledge gained from these reconstructions was then used to perform parametric studies on key variables that influence injury risk in the rear seats. From the parametric studies, it was found that the seat back angle, the width of the seatbelt anchors, and the presence of a seatbelt pretensioner had the largest influences on the injury risk. One of the injury mechanisms prevalent in the rear seats is submarining. Submarining likelihood and injury probability is difficult to predict with anthropomorphic test devices; however, human body models can help to improve injury prediction in these cases. To improve the injury prediction capability of human body models, several additions to the models are necessary. This dissertation outlines the investigation of spleen and kidney shapes through statistical shape analysis. This type of analysis allows more customizable human body models which could better capture the injury probability to these organs for a wider range of the population. Finally, subject-specific models of ribs were created to investigate factors affecting the predictive capability of finite element models. The findings and methodology from this body of work have the ability to add critical contributions to the understanding of injury risk and injury mechanisms in the rear seats.

Description

Keywords

rear seat occupant protection, finite element optimization, statistical shape analysis

Citation