A stage-by-stage post-stall compression system modeling technique: methodology, validation, and application
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A one-dimensional, stage-by-stage axial compression system mathematical model has been constructed which can describe system behavior during post-stall events such as surge and rotating stall. The model uses a numerical technique to solve the nonlinear conservation equations of mass, momentum, and energy. Inputs for blade forces and shaft work are provided by a set of quasi-steady stage characteristics modified by a first order lagging equation to simulate dynamic stage characteristics.
The model was validated with experimental results for a three-stage, low-speed compressor and a nine-stage, high-pressure compressor. Using these models, a parametric study was conducted to determine the effect of inlet resistance, combustor performance, heat transfer, and stage characteristic changes due to hardware modification on post—stall system behavior.