Occupant Responses of Relaxed and Braced 5th Percentile Female and 50th Percentile Male Volunteers during Low-Speed Frontal and Frontal-Oblique Sled Tests
dc.contributor.author | Chan, Hana | en |
dc.contributor.committeechair | Kemper, Andrew R. | en |
dc.contributor.committeemember | Gayzik, Francis S. | en |
dc.contributor.committeemember | Danelson, Kerry Ann | en |
dc.contributor.committeemember | Albert, Devon Lee | en |
dc.contributor.committeemember | Hardy, Warren Nelson | en |
dc.contributor.department | Department of Biomedical Engineering and Mechanics | en |
dc.date.accessioned | 2023-07-06T08:01:06Z | en |
dc.date.available | 2023-07-06T08:01:06Z | en |
dc.date.issued | 2023-07-05 | en |
dc.description.abstract | The increased prevalence of crash avoidance technologies like autonomous emergency braking necessitates understanding of occupant responses during low-speed frontal pre-crash braking and low-severity crash events. Active human body models (HBMs) have emerged as valuable tools to evaluate occupant safety during these events, but must be validated with relevant volunteer data to accurately represent the responses of live occupants. The objective of this dissertation was to quantify the occupant responses of relaxed and braced 5th percentile female and 50th percentile male volunteers during low-speed frontal and frontal-oblique sled tests designed to simulate pre-crash braking and low-severity crash events. A study comprised of 160 low-speed sled tests was performed with 20 volunteers. The volunteers' kinematics, kinetics, and muscle responses were compared to determine how altering impact direction (frontal and frontal-oblique), impact severity (1 g and 2.5 g), demographic group (mid-size male and small female), and muscle state (relaxed and braced) affected occupant responses. The volunteers' occupant responses were significantly affected by impact direction, impact severity, demographic group, and muscle state. The frontal-oblique tests resulted in greater leftward excursions compared to the frontal tests. Increasing the pulse severity resulted in greater forward excursions, reaction forces, and muscle activation. The male volunteers exhibited greater forward excursions and reaction forces compared to the female volunteers. However, the two demographic groups exhibited similar muscle activation during the sled tests. Bracing increased the volunteers' initial joint angles, muscle activation, and reaction forces prior to the sled tests. Bracing decreased forward excursions and increased reaction forces during the sled tests. The relaxed volunteers exhibited greater relative changes in occupant responses compared to the braced volunteers. Overall, this study demonstrated that muscle activation significantly affected the volunteers' kinematics, kinetics, and muscle responses for both mid-size males and small females during low-speed events. Observed differences between demographic groups were more prominent when relaxed and more diminished when braced. These results underscore the importance of validating active HBMs with relevant volunteer data in order to be more representative of live occupants for a wider range of demographic groups in varying muscle states. Finally, this dissertation provides a large, comprehensive, and novel biomechanical dataset that can be used to develop and validate active HBMs for use in assessing occupant response during frontal pre-crash braking and low-severity crash events. These models will help improve the understanding of potential injury risk and development of effective vehicle safety systems for use during low-speed events. | en |
dc.description.abstractgeneral | Computer models, known as active human body models (HBMs), have emerged as tools that can be used to assess occupant safety during low-speed vehicle crashes. In these types of events, occupants have enough time to react and potentially brace before the crash, which could in turn affect their responses during the crash. It is important to understand how occupants respond during crashes so that effective vehicle safety systems can be developed. Active HBMs are particularly valuable because they can simulate muscle activation to reflect the response of live occupants. However, data are needed from live occupants to ensure that these models are accurate. To gather this data, a study was performed where volunteers experienced low-speed frontal sled tests when they were relaxed and braced. The sled tests were designed to simulate pre-crash braking and low-severity vehicle crashes. Mid-size male and small female volunteers were recruited to participate to represent the standard adult occupant populations used in current frontal impact vehicle safety standards. A motion capture system was used to measure the volunteers' forward motion, load cells were used to measure the volunteers' exerted reaction forces on the test buck, and electrodes were used to measure the volunteers' muscle activity. The volunteers' responses were significantly different between the relaxed and braced muscle states, and between the males and females. Comparing between males and females, the males moved farther forward and exerted larger reaction forces, but both demographic groups exhibited similar muscle responses. Comparing between muscle states, bracing increased the volunteers' muscle activation and reaction forces before the sled tests. Bracing also increased the volunteers' reaction forces during the sled tests, but decreased forward movement. Overall, the volunteers exhibited greater relative changes in response when they were relaxed compared to when they were braced. Overall, this study demonstrated that muscle activation significantly affected the volunteers' responses for both mid-size males and small females during low-speed events. These results highlight the importance of developing active HBMs with relevant volunteer data in order to be more representative of live occupants. Finally, the data from this study can be used to develop active HBMs to improve their accuracy, so that the models can be used to assess occupant safety during low-speed frontal vehicle crashes. This will help improve the understanding of potential injury risk and development of effective vehicle safety systems, to reduce the number of injuries caused by vehicle crashes. | en |
dc.description.degree | Doctor of Philosophy | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:37765 | en |
dc.identifier.uri | http://hdl.handle.net/10919/115658 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | active human body model | en |
dc.subject | autonomous braking | en |
dc.subject | biomechanics | en |
dc.subject | muscle activation | en |
dc.subject | pre-impact bracing | en |
dc.title | Occupant Responses of Relaxed and Braced 5th Percentile Female and 50th Percentile Male Volunteers during Low-Speed Frontal and Frontal-Oblique Sled Tests | en |
dc.type | Dissertation | en |
thesis.degree.discipline | Biomedical Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Doctor of Philosophy | en |