Stationary solutions of abstract kinetic equations
dc.contributor.author | Walus, Wlodzimierz Ignacy | en |
dc.contributor.committeechair | Greenberg, William | en |
dc.contributor.committeemember | Arnold, Jesse T. | en |
dc.contributor.committeemember | Hagedorn, George | en |
dc.contributor.committeemember | Slawny, Joseph | en |
dc.contributor.committeemember | Williams, M. | en |
dc.contributor.committeemember | Zweifel, Paul F. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2015-06-24T13:35:21Z | en |
dc.date.available | 2015-06-24T13:35:21Z | en |
dc.date.issued | 1985 | en |
dc.description.abstract | The abstract kinetic equation Tψ’=-Aψ is studied with partial range boundary conditions in two geometries, in the half space x≥0 and on a finite interval [0, r]. T and A are abstract self-adjoint operators in a complex Hilbert space. In the case of the half space problem it is assumed that T is a (possibly) unbounded injection and A is a positive compact perturbation of the identity satisfying a regularity condition, while in the case of slab geometry T is a bounded injection and A is a bounded Fredholm operator with a finite dimensional negative part. Existence and uniqueness theory is developed for both models. Results are illustrated on relevant physical examples. | en |
dc.description.degree | Ph. D. | en |
dc.format.extent | iv, 66 leaves ; | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | http://hdl.handle.net/10919/53613 | en |
dc.language.iso | en_US | en |
dc.publisher | Virginia Polytechnic Institute and State University | en |
dc.relation.isformatof | OCLC# 13193954 | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.lcc | LD5655.V856 1985.W348 | en |
dc.subject.lcsh | Transport theory | en |
dc.subject.lcsh | Hilbert space | en |
dc.subject.lcsh | Rarefied gas dynamics -- Mathematical models | en |
dc.title | Stationary solutions of abstract kinetic equations | en |
dc.type | Dissertation | en |
dc.type.dcmitype | Text | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | doctoral | en |
thesis.degree.name | Ph. D. | en |
Files
Original bundle
1 - 1 of 1