Dynamic and Post-Dynamic Microstructure Evolution in Additive Friction Stir Deposition

TR Number

Date

2021-08-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Metal additive manufacturing stands poised to disrupt multiple industries with high material use efficiency and complex part production capabilities, however many technologies deposit material with sub-optimal properties, limiting their use. This decrease in performance largely stems from porosity laden parts, and asymmetric solidification-based microstructures. Solid-state additive manufacturing techniques bypass these flaws, using deformation and diffusion phenomena to bond material together layer by layer. Among these techniques, Additive Friction Stir Deposition (AFSD), stands out as unique for its freeform nature, and thermomechanical conditions during material processing. Leveraging its solid-state behavior, optimized microstructures produced by AFSD can reach performance levels near, at, or even above traditionally prepared metals. A strong understanding of the material conditions during AFSD and the phenomena responsible for microstructure evolution. Here we discuss two works aimed at improving the state of knowledge surrounding AFSD, promoting future microstructure optimization. First, a parametric study is performed, finding a wide array of producible microstructures across two material systems. In the second work, a stop-action type experiment is employed to observe the dynamic microstructure evolution across the AFSD material flow pathway, finding specific thermomechanical regimes that occur within. Finally, multiple conventional alloy systems are discussed as their microstructure evolution pertains to AFSD, as well as some more unique systems previously limited to small lab scale techniques, but now producible in bulk due to the additive nature of AFSD.

Description

Keywords

Additive manufacturing, metals, thermomechanical processing, severe plastic deformation

Citation