The use of auxiliary information in the linear least-squares prediction approach to cluster sampling in a finite population

dc.contributor.authorMadden, Ragan Burten
dc.contributor.departmentStatisticsen
dc.contributor.departmentStatisticsen
dc.date.accessioned2019-01-31T19:03:51Zen
dc.date.available2019-01-31T19:03:51Zen
dc.date.issued1976en
dc.description.abstractLinear least-squares prediction methods are applied to cluster (two-stage) sampling problems in a finite population where auxiliary information is available. Two regression models which describe the behavior of the second-stage units and which utilize the auxiliary information are considered. For one model the optimum estimator of the total of the second-stage units and its mean square error (m.s.e.) are derived. The selection of clusters which minimize the m.s.e. are determined for certain cases. For both models a conventional estimator of the total is analyzed in the prediction theory framework. Optimum sampling designs for the conventional estimator are obtained for certain parameter configurations. A computer implemented study to compare the performances of the estimators for a wide range of parameter values is done. A practical problem is analyzed.en
dc.description.degreePh. D.en
dc.format.extentix, 180 pages, 1 unnumbered leavesen
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/10919/87316en
dc.language.isoenen
dc.publisherVirginia Polytechnic Institute and State Universityen
dc.relation.isformatofOCLC# 40194785en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1976.M335en
dc.titleThe use of auxiliary information in the linear least-squares prediction approach to cluster sampling in a finite populationen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineStatisticsen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1976.M335.pdf
Size:
5.68 MB
Format:
Adobe Portable Document Format