Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?

dc.contributor.authorBollt, Erik M.en
dc.contributor.authorRoss, Shane D.en
dc.date.accessioned2021-11-11T19:25:20Zen
dc.date.available2021-11-11T19:25:20Zen
dc.date.issued2021-10-28en
dc.date.updated2021-11-11T14:57:25Zen
dc.description.abstractThis work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBollt, E.M.; Ross, S.D. Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? Mathematics 2021, 9, 2731.en
dc.identifier.doihttps://doi.org/10.3390/math9212731en
dc.identifier.urihttp://hdl.handle.net/10919/106616en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectKoopman operatoren
dc.subjectspectral analysisen
dc.subjectinvariant manifoldsen
dc.subjectLyapunov exponenten
dc.subjectdynamical systemsen
dc.titleIs the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?en
dc.title.serialMathematicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-09-02731.pdf
Size:
489.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: