Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
dc.contributor.author | Bollt, Erik M. | en |
dc.contributor.author | Ross, Shane D. | en |
dc.date.accessioned | 2021-11-11T19:25:20Z | en |
dc.date.available | 2021-11-11T19:25:20Z | en |
dc.date.issued | 2021-10-28 | en |
dc.date.updated | 2021-11-11T14:57:25Z | en |
dc.description.abstract | This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory. | en |
dc.description.version | Published version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Bollt, E.M.; Ross, S.D. Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? Mathematics 2021, 9, 2731. | en |
dc.identifier.doi | https://doi.org/10.3390/math9212731 | en |
dc.identifier.uri | http://hdl.handle.net/10919/106616 | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Koopman operator | en |
dc.subject | spectral analysis | en |
dc.subject | invariant manifolds | en |
dc.subject | Lyapunov exponent | en |
dc.subject | dynamical systems | en |
dc.title | Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? | en |
dc.title.serial | Mathematics | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |