Tensile and uniaxial/multiaxial fatigue behavior of ceramic matrix composites at ambient and elevated temperatures

dc.contributor.authorLiao, Kinen
dc.contributor.committeechairReifsnider, Kenneth L.en
dc.contributor.committeememberHasselman, D.P.H.en
dc.contributor.committeememberKriz, Ronald D.en
dc.contributor.committeememberStinchcomb, Wayne W.en
dc.contributor.committeememberWilkes, Garth L.en
dc.contributor.departmentMaterials Engineering Scienceen
dc.date.accessioned2014-03-14T21:21:52Zen
dc.date.adate2005-10-20en
dc.date.available2014-03-14T21:21:52Zen
dc.date.issued1994-10-05en
dc.date.rdate2005-10-20en
dc.date.sdate2005-10-20en
dc.description.abstractIncreasing use of fiber reinforced ceramic matrix composites (CMC's) materials is needed, especially for hostile environments such as elevated temperatures. However, some fundamental issues regarding how these materials should be made for optimized performance are far from being settled. This study focuses on the modeling of the tensile behavior of unidirectional CMC using statistical methods and micro-mechanical analysis, based on laboratory observations. The model can be used to examine the effect of performance-influencing parameters on the strength of unidirectional CMC, thus shed light on how such material should be put together. The tensile strength model was then modified such that the behavior of unidirectioal CMC under cyclic tensile load can be studied. Results from the tensile strength model suggest that the Weibull modulus, <i>m</i>, of the strength of the reinforcing fibers and the fiber/matrix interfacial shear stress both have significant effect on the strength and toughness of the unidirectional composite: a higher <i>m</i> value and a lower interfacial shear stress result in a lower strength; a lower value of <i>m</i> and a higher interfacial shear stress results in a higher strength but lower toughness. Calculations from the tensile fatigue model suggest that a lower <i>m</i> value results in a longer fatigue life.en
dc.description.degreePh. D.en
dc.format.extentxi, 141 leavesen
dc.format.mediumBTDen
dc.format.mimetypeapplication/pdfen
dc.identifier.otheretd-10202005-102839en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-10202005-102839/en
dc.identifier.urihttp://hdl.handle.net/10919/40047en
dc.language.isoenen
dc.publisherVirginia Techen
dc.relation.haspartLD5655.V856_1994.L54.pdfen
dc.relation.isformatofOCLC# 32793754en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.lccLD5655.V856 1994.L54en
dc.subject.lcshCeramic-matrix composites -- Fatigueen
dc.titleTensile and uniaxial/multiaxial fatigue behavior of ceramic matrix composites at ambient and elevated temperaturesen
dc.typeDissertationen
dc.type.dcmitypeTexten
thesis.degree.disciplineMaterials Engineering Scienceen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.leveldoctoralen
thesis.degree.namePh. D.en

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LD5655.V856_1994.L54.pdf
Size:
11.76 MB
Format:
Adobe Portable Document Format