Ultra-Fast Approximate Inference Using Variational Functional Mixed Models

dc.contributor.authorHuo, Shuningen
dc.contributor.authorMorris, Jeffrey S.en
dc.contributor.authorZhu, Hongxiaoen
dc.date.accessioned2024-01-19T13:15:35Zen
dc.date.available2024-01-19T13:15:35Zen
dc.date.issued2023-04-03en
dc.description.abstractWhile Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. Supplementary materials for this article are available online.en
dc.description.versionAccepted versionen
dc.format.extentPages 353-365en
dc.format.extent13 page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1080/10618600.2022.2107532en
dc.identifier.eissn1537-2715en
dc.identifier.issn1061-8600en
dc.identifier.issue2en
dc.identifier.otherPMC10441618en
dc.identifier.pmid37608921en
dc.identifier.urihttps://hdl.handle.net/10919/117403en
dc.identifier.volume32en
dc.language.isoenen
dc.publisherTaylor & Francisen
dc.relation.urihttps://www.ncbi.nlm.nih.gov/pubmed/37608921en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectApproximate Bayesian inferenceen
dc.subjectDistributed inferenceen
dc.subjectFunctional data analysisen
dc.subjectParallel computingen
dc.subjectVariational Bayesen
dc.titleUltra-Fast Approximate Inference Using Variational Functional Mixed Modelsen
dc.title.serialJournal of Computational and Graphical Statisticsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/Statisticsen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Plain Text
Description: